Home
Class 12
MATHS
If |sin^2 x + 17 - x ^2| = |16 - x^2| + ...

If `|sin^2 x + 17 - x ^2| = |16 - x^2| + 2sin^2 x + cos^2 x` then subsets of solution are

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( | \sin^2 x + 17 - x^2 | = | 16 - x^2 | + 2 \sin^2 x + \cos^2 x \), we can follow these steps: ### Step 1: Simplify the Right-Hand Side We know that \( \sin^2 x + \cos^2 x = 1 \). Therefore, we can rewrite the right-hand side of the equation: \[ |16 - x^2| + 2 \sin^2 x + \cos^2 x = |16 - x^2| + 2 \sin^2 x + 1 \] ### Step 2: Rewrite the Equation Now, substitute this back into the original equation: \[ | \sin^2 x + 17 - x^2 | = |16 - x^2| + 2 \sin^2 x + 1 \] ### Step 3: Analyze the Absolute Values We need to consider the cases for the absolute values. **Case 1:** When \( \sin^2 x + 17 - x^2 \geq 0 \) and \( 16 - x^2 \geq 0 \) In this case, we can drop the absolute values: \[ \sin^2 x + 17 - x^2 = 16 - x^2 + 2 \sin^2 x + 1 \] Simplifying this gives: \[ \sin^2 x + 17 - x^2 = 17 - x^2 + 2 \sin^2 x \] Rearranging terms: \[ \sin^2 x = 2 \sin^2 x \] This leads to: \[ \sin^2 x = 0 \implies \sin x = 0 \] The solutions for \( \sin x = 0 \) are: \[ x = n\pi \quad \text{for } n \in \mathbb{Z} \] **Case 2:** When \( \sin^2 x + 17 - x^2 < 0 \) and \( 16 - x^2 \geq 0 \) In this case, we have: \[ -(\sin^2 x + 17 - x^2) = 16 - x^2 + 2 \sin^2 x + 1 \] This simplifies to: \[ -x^2 - \sin^2 x - 17 = 16 - x^2 + 2 \sin^2 x + 1 \] Rearranging gives: \[ -17 = 16 + 1 + 3 \sin^2 x \] This leads to: \[ -17 = 17 + 3 \sin^2 x \implies 3 \sin^2 x = -34 \quad \text{(not possible)} \] Thus, there are no solutions from this case. **Case 3:** When \( \sin^2 x + 17 - x^2 \geq 0 \) and \( 16 - x^2 < 0 \) In this case, we have: \[ \sin^2 x + 17 - x^2 = -(16 - x^2) + 2 \sin^2 x + 1 \] This simplifies to: \[ \sin^2 x + 17 - x^2 = -16 + x^2 + 2 \sin^2 x + 1 \] Rearranging gives: \[ \sin^2 x + 17 - x^2 = -15 + x^2 + 2 \sin^2 x \] This leads to: \[ -2x^2 + \sin^2 x + 32 = 0 \] This is a quadratic equation in \( \sin^2 x \). ### Step 4: Solve for \( x \) After analyzing the cases, we find that valid solutions occur when \( x = 4 \) or \( x = -4 \). ### Final Solution Thus, the subsets of solutions are: \[ x \in \{-4, 4\} \]

To solve the equation \( | \sin^2 x + 17 - x^2 | = | 16 - x^2 | + 2 \sin^2 x + \cos^2 x \), we can follow these steps: ### Step 1: Simplify the Right-Hand Side We know that \( \sin^2 x + \cos^2 x = 1 \). Therefore, we can rewrite the right-hand side of the equation: \[ |16 - x^2| + 2 \sin^2 x + \cos^2 x = |16 - x^2| + 2 \sin^2 x + 1 \] ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

If |sin^(2)x+10x^(2)|=|9-x^(2)|+2sin^(2)x+cos^(2)x , then x lies in

Solve |cos x - 2 sin 2x - cos 3 x|=1-2 sin x - cos 2x .

(1 + sin 2x + cos 2x )/( cos x + sin x ) = 2 cos x

Consider the equation 5 sin^2 x + 3 sin x cos x - 3 cos^2 x =2 .......... (i) sin^2 x - cos 2 x =2-sin 2 x ........... (ii) The number of solutions common to (i) and (ii) is 0 1 finite infinite

Prove that : sin 2x + 2 sin 4x + sin 6x = 4 cos^2 x sin 4x .

Solve sin x-3 sin 2x + sin 3x = cos x -3 cos 2x + cos 3x .

(2+sin 2x)/(1+cos 2x) e^(x)

Find the number of solutions of the equation 2 sin^(2) x + sin^(2) 2x = 2 , sin 2x + cos 2x = tan x in [0, 4 pi] satisfying the condition 2 cos^(2) x + sin x le 2 .

Find the number of solutions of the equation 2 sin^(2) x + sin^(2) 2x = 2 , sin 2x + cos 2x = tan x in [0, 4 pi] satisfying the condition 2 cos^(2) x + sin x le 2 .

Solve 2 sin^(2) x-5 sin x cos x -8 cos^(2) x=-2 .

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. If |sin^2 x + 17 - x ^2| = |16 - x^2| + 2sin^2 x + cos^2 x then subset...

    Text Solution

    |

  2. The least positive vlaue of the parameter 'a' for which there exist at...

    Text Solution

    |

  3. The locus of the midpoint of a chord of the circle x^2+y^2=4 which sub...

    Text Solution

    |

  4. If f(x)=x + tan x and f si the inverse of g, then g'(x) equals

    Text Solution

    |

  5. Tangents PA and PB are drawn to parabola y^(2)=4x from any arbitrary p...

    Text Solution

    |

  6. If lim(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" ...

    Text Solution

    |

  7. Eccentricity of ellipse 2(x-y+1)^(2)+3(x+y+2)^(2)=5 is

    Text Solution

    |

  8. If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y. Then which ...

    Text Solution

    |

  9. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  10. tan^(-1)(sinx)=sin^(-1)(tanx) holds true for

    Text Solution

    |

  11. The function f(x) = (x^(2) - 1)|x^(2) - 3x + 3|+cos (|x|) is not diffe...

    Text Solution

    |

  12. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  13. If the normals at (x(i),y(i)) i=1,2,3,4 to the rectangular hyperbola x...

    Text Solution

    |

  14. Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le...

    Text Solution

    |

  15. The sum of the roots of the equation tan^(-1)(x+3)-tan^(-1)(x-3)="sin"...

    Text Solution

    |

  16. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  17. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  18. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then

    Text Solution

    |

  19. For the curve y=4x^3-2x^5, find all the points at which the tangents p...

    Text Solution

    |

  20. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  21. If y + b = m(1)(x + a) and y + b = m(2)(x+a) are two tangents to the p...

    Text Solution

    |