Home
Class 12
MATHS
Which of the following numbers are non p...

Which of the following numbers are non positive? (A) `5^(log_(11)7)-7(log_(11)5)` (B) `log_(3)(sqrt(7)-2)` (C) `log_(7)((1)/(2))^(-1//2)` (D) `log_(sqrt(2)-1) (sqrt(2)+1)/(sqrt(2)-1)`

A

`5^(log_(11)7)-7(log_(11)5)`

B

`log_(3)(sqrt(7)-2)`

C

`log_(7)((1)/(2))^(-1//2)`

D

`log_(sqrt(2)-1) (sqrt(2)+1)/(sqrt(2)-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To determine which of the given numbers are non-positive, we will evaluate each option step by step. ### Option (A): \( 5^{\log_{11} 7} - 7 \log_{11} 5 \) 1. **Calculate \( \log_{11} 7 \)**: \[ \log_{11} 7 = \frac{\log 7}{\log 11} \] Using approximate values, \( \log 7 \approx 0.845 \) and \( \log 11 \approx 1.041 \): \[ \log_{11} 7 \approx \frac{0.845}{1.041} \approx 0.812 \] 2. **Calculate \( 5^{\log_{11} 7} \)**: \[ 5^{\log_{11} 7} \approx 5^{0.812} \approx 3.68 \] 3. **Calculate \( \log_{11} 5 \)**: \[ \log_{11} 5 = \frac{\log 5}{\log 11} \] Using approximate values, \( \log 5 \approx 0.699 \): \[ \log_{11} 5 \approx \frac{0.699}{1.041} \approx 0.672 \] 4. **Calculate \( 7 \log_{11} 5 \)**: \[ 7 \log_{11} 5 \approx 7 \times 0.672 \approx 4.704 \] 5. **Combine the results**: \[ 5^{\log_{11} 7} - 7 \log_{11} 5 \approx 3.68 - 4.704 \approx -1.024 \] Thus, option (A) is non-positive. ### Option (B): \( \log_{3}(\sqrt{7} - 2) \) 1. **Evaluate \( \sqrt{7} - 2 \)**: \[ \sqrt{7} \approx 2.645 \quad \Rightarrow \quad \sqrt{7} - 2 \approx 0.645 \] 2. **Calculate \( \log_{3}(\sqrt{7} - 2) \)**: Since \( \sqrt{7} - 2 > 0 \): \[ \log_{3}(0.645) < 0 \] Thus, option (B) is non-positive. ### Option (C): \( \log_{7}\left(\left(\frac{1}{2}\right)^{-\frac{1}{2}}\right) \) 1. **Simplify the expression**: \[ \left(\frac{1}{2}\right)^{-\frac{1}{2}} = \sqrt{2} \] 2. **Calculate \( \log_{7}(\sqrt{2}) \)**: Since \( \sqrt{2} < 7 \): \[ \log_{7}(\sqrt{2}) < 1 \quad \text{(but positive)} \] Thus, option (C) is positive. ### Option (D): \( \log_{\sqrt{2}-1}\left(\frac{\sqrt{2}+1}{\sqrt{2}-1}\right) \) 1. **Evaluate \( \frac{\sqrt{2}+1}{\sqrt{2}-1} \)**: This can be simplified using the identity: \[ \frac{\sqrt{2}+1}{\sqrt{2}-1} = \frac{(\sqrt{2}+1)^2}{(\sqrt{2}-1)(\sqrt{2}+1)} = \frac{3 + 2\sqrt{2}}{1} = 3 + 2\sqrt{2} \] 2. **Calculate \( \log_{\sqrt{2}-1}(3 + 2\sqrt{2}) \)**: Since \( \sqrt{2}-1 < 1 \) and \( 3 + 2\sqrt{2} > 1 \): The logarithm will be negative: \[ \log_{\sqrt{2}-1}(3 + 2\sqrt{2}) < 0 \] Thus, option (D) is non-positive. ### Conclusion: The non-positive numbers are: - Option (A) - Option (B) - Option (D)
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

log((sqrt2-1)/(sqrt2+1))

Which of the following numbers are positive/negative : (i) log_(sqrt(3))sqrt(2) (ii)log_3(4)

Solve log_(2)(2sqrt(17-2x))=1 - log_(1//2)(x-1) .

The value of log_((sqrt(2)-1))(5sqrt(2)-7) is :

int_(1)^(7)(log sqrt(x))/(log sqrt(8-x)+log sqrt(x))dx=

Which of the following, when simplified, reduces to unity? (log)_(10)5dot(log)_(10)20+((log)_(10)2)^2 . (c) -(log)_5(log)_3sqrt(5sqrt(9)) 1/6(log)_((sqrt(3))/2)((64)/(27))

Find the value of the following: (i) log_(10) 2 + log_(10) 5 (ii) log_(3) (sqrt(11)-sqrt2) + log_(3) (sqrt11+sqrt2) (iii) log_(7) 35 - log_(7) 5

Which of the following when simplified reduces to unity? (log)_(3/2)(log)_4(log)_(sqrt(3))81 (log)_2 6+(log)_2sqrt(2/3) -1/6(log)_(sqrt(3/2))((64)/(27)) (d) (log)_(7/2)(1+2-3-:6)

Which is/are true ? (A) log_(0.2)3lt log_(2)3 (B) log_(sqrt(5))10ltlog _(sqrt(3))11 (C) log_(sqrt(3))10gtlog _(sqrt(5))11 (D) log _((2-sqrt3))(7-4sqrt(3))gtlog_((sqrt(3)-1))(4-2sqrt(3))

If log_(2)m=sqrt(7)andlog_(7)n=sqrt(2) ,mn=

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. Which of the following numbers are non positive? (A) 5^(log(11)7)-7(lo...

    Text Solution

    |

  2. The least positive vlaue of the parameter 'a' for which there exist at...

    Text Solution

    |

  3. The locus of the midpoint of a chord of the circle x^2+y^2=4 which sub...

    Text Solution

    |

  4. If f(x)=x + tan x and f si the inverse of g, then g'(x) equals

    Text Solution

    |

  5. Tangents PA and PB are drawn to parabola y^(2)=4x from any arbitrary p...

    Text Solution

    |

  6. If lim(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" ...

    Text Solution

    |

  7. Eccentricity of ellipse 2(x-y+1)^(2)+3(x+y+2)^(2)=5 is

    Text Solution

    |

  8. If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y. Then which ...

    Text Solution

    |

  9. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  10. tan^(-1)(sinx)=sin^(-1)(tanx) holds true for

    Text Solution

    |

  11. The function f(x) = (x^(2) - 1)|x^(2) - 3x + 3|+cos (|x|) is not diffe...

    Text Solution

    |

  12. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  13. If the normals at (x(i),y(i)) i=1,2,3,4 to the rectangular hyperbola x...

    Text Solution

    |

  14. Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le...

    Text Solution

    |

  15. The sum of the roots of the equation tan^(-1)(x+3)-tan^(-1)(x-3)="sin"...

    Text Solution

    |

  16. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  17. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  18. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then

    Text Solution

    |

  19. For the curve y=4x^3-2x^5, find all the points at which the tangents p...

    Text Solution

    |

  20. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  21. If y + b = m(1)(x + a) and y + b = m(2)(x+a) are two tangents to the p...

    Text Solution

    |