Home
Class 12
MATHS
STATEMENT - 1 : If .^(2n+1)C(1) + .^(2...

STATEMENT - 1 :
If `.^(2n+1)C_(1)` + `.^(2n+1)C_(2)+………+ .^(2n+1)C_(n)= 4095`, then `n = 7`
STATEMENT - 2 :
`.^(n)C_(r )= .^(n)C_(n-r)` where `n epsilon N, r epsilon W and n ge r`

A

STATEMENT - 1 is True, STATEMENT- 2 is True , STATEMENT - 2 is a correct explanation for STATEMENT - 1

B

STATEMENT - 1 is True, STATEMENT - 2 is True , STATEMENT - 2 is NOT a correct explanation for STATEMENT - 1

C

STATEMENT -1 is True, STATEMENT - 2 is False

D

STATEMENT -1 is False, STATEMENT - 2 is True

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the statements given and verify their correctness step by step. ### Step 1: Analyze Statement 1 The statement is: \[ \binom{2n+1}{1} + \binom{2n+1}{2} + \ldots + \binom{2n+1}{n} = 4095 \] This expression represents the sum of the first \( n \) binomial coefficients from \( \binom{2n+1}{1} \) to \( \binom{2n+1}{n} \). ### Step 2: Use the Binomial Theorem According to the binomial theorem, the sum of all coefficients in the expansion of \( (1 + 1)^{2n+1} \) is: \[ 2^{2n+1} = \sum_{k=0}^{2n+1} \binom{2n+1}{k} \] This means: \[ \sum_{k=0}^{n} \binom{2n+1}{k} + \sum_{k=n+1}^{2n+1} \binom{2n+1}{k} = 2^{2n+1} \] ### Step 3: Relate the Sums Since \( \binom{2n+1}{k} = \binom{2n+1}{2n+1-k} \), we can say: \[ \sum_{k=0}^{n} \binom{2n+1}{k} = \sum_{k=n+1}^{2n+1} \binom{2n+1}{k} \] Thus: \[ 2 \sum_{k=0}^{n} \binom{2n+1}{k} = 2^{2n+1} \] This simplifies to: \[ \sum_{k=0}^{n} \binom{2n+1}{k} = 2^{2n} \] ### Step 4: Calculate the Required Sum From the problem statement: \[ \sum_{k=1}^{n} \binom{2n+1}{k} = 4095 \] This can be rewritten as: \[ \sum_{k=0}^{n} \binom{2n+1}{k} - \binom{2n+1}{0} = 4095 \] Substituting \( \binom{2n+1}{0} = 1 \): \[ 2^{2n} - 1 = 4095 \] Thus: \[ 2^{2n} = 4096 \] ### Step 5: Solve for \( n \) Since \( 4096 = 2^{12} \): \[ 2n = 12 \implies n = 6 \] ### Conclusion for Statement 1 The statement claims \( n = 7 \), which is incorrect. Therefore, Statement 1 is **false**. ### Step 6: Analyze Statement 2 The second statement is: \[ \binom{n}{r} = \binom{n}{n-r} \] This is a well-known identity in combinatorics, which states that choosing \( r \) items from \( n \) is the same as choosing \( n-r \) items from \( n \). ### Conclusion for Statement 2 Since this identity is true, Statement 2 is **true**. ### Final Answer - Statement 1: False - Statement 2: True

To solve the problem, we need to analyze the statements given and verify their correctness step by step. ### Step 1: Analyze Statement 1 The statement is: \[ \binom{2n+1}{1} + \binom{2n+1}{2} + \ldots + \binom{2n+1}{n} = 4095 \] ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

If .^(n)C_(r-1): .^(n)C_(r): .^(n)C_(r+1)=3:4:5 , find the values of n and r.

If .^(n)C_(r-1)=36, .^(n)C_(r)=84 and .^(n)C_(r+1)=126 , find n and r.

For ""^(n) C_(r) + 2 ""^(n) C_(r-1) + ""^(n) C_(r-2) =

STATEMENT - 1 : If n is even, .^(2n)C_(1)+.^(2n)C_(3)+.^(2n)C_(5)+"….."+.^(2n)C_(n-1) = 2^(2n-2) . STATEMENT - 2 : .^(2n)C_(1) + .^(2n)C_(3)+ .^(2n)C_(5) + "……"+ .^(2n)C_(2n-1) = 2^(2n-1)

.^(n)C_(r)+2.^(n)C_(r-1)+.^(n)C_(r-2)=

If .^(n+1)C_(r+1):^(n)C_(r):^(n-1)C_(r-1)=11:6:3 , find the values of n and r.

""^(n) C_(r+1)+2""^(n)C_(r) +""^(n)C_(r-1)=

Prove that .^(n)C_(0) - .^(n)C_(1) + .^(n)C_(2) - .^(n)C_(3) + "……" + (-1)^(r) + .^(n)C_(r) + "……" = (-1)^(r ) xx .^(n-1)C_(r ) .

If ""^(n)C_(r -1) = 36, ""^(n)C_(r) = 84 " and " ""^(n)C_(r +1) = 126 , then find the value of ""^(r)C_(2) .

""^(n)C_(r+1)+^(n)C_(r-1)+2.""^(n)C_(r)=

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. STATEMENT - 1 : If .^(2n+1)C(1) + .^(2n+1)C(2)+………+ .^(2n+1)C(n)= 40...

    Text Solution

    |

  2. The least positive vlaue of the parameter 'a' for which there exist at...

    Text Solution

    |

  3. The locus of the midpoint of a chord of the circle x^2+y^2=4 which sub...

    Text Solution

    |

  4. If f(x)=x + tan x and f si the inverse of g, then g'(x) equals

    Text Solution

    |

  5. Tangents PA and PB are drawn to parabola y^(2)=4x from any arbitrary p...

    Text Solution

    |

  6. If lim(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" ...

    Text Solution

    |

  7. Eccentricity of ellipse 2(x-y+1)^(2)+3(x+y+2)^(2)=5 is

    Text Solution

    |

  8. If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y. Then which ...

    Text Solution

    |

  9. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  10. tan^(-1)(sinx)=sin^(-1)(tanx) holds true for

    Text Solution

    |

  11. The function f(x) = (x^(2) - 1)|x^(2) - 3x + 3|+cos (|x|) is not diffe...

    Text Solution

    |

  12. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  13. If the normals at (x(i),y(i)) i=1,2,3,4 to the rectangular hyperbola x...

    Text Solution

    |

  14. Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le...

    Text Solution

    |

  15. The sum of the roots of the equation tan^(-1)(x+3)-tan^(-1)(x-3)="sin"...

    Text Solution

    |

  16. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  17. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  18. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then

    Text Solution

    |

  19. For the curve y=4x^3-2x^5, find all the points at which the tangents p...

    Text Solution

    |

  20. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  21. If y + b = m(1)(x + a) and y + b = m(2)(x+a) are two tangents to the p...

    Text Solution

    |