Home
Class 12
MATHS
If 'x' is real, then greatest value of t...

If 'x' is real, then greatest value of the expression, `(x+2)/(2x^(2)+3x +6)` is :

A

`1//13`

B

`-1//13`

C

`3`

D

`1//3`

Text Solution

AI Generated Solution

The correct Answer is:
To find the greatest value of the expression \( y = \frac{x+2}{2x^2 + 3x + 6} \), we will follow these steps: ### Step 1: Set up the expression We start with the expression: \[ y = \frac{x + 2}{2x^2 + 3x + 6} \] ### Step 2: Rearrange the equation We can rearrange the equation to eliminate the fraction: \[ y(2x^2 + 3x + 6) = x + 2 \] This simplifies to: \[ 2xy^2 + 3xy + 6y - x - 2 = 0 \] ### Step 3: Rearrange into standard quadratic form Rearranging gives us a quadratic in terms of \( x \): \[ 2xy^2 + (3y - 1)x + (6y - 2) = 0 \] ### Step 4: Apply the discriminant condition For \( x \) to have real solutions, the discriminant \( D \) of this quadratic must be non-negative: \[ D = b^2 - 4ac \geq 0 \] Here, \( a = 2y \), \( b = 3y - 1 \), and \( c = 6y - 2 \). Thus, we have: \[ (3y - 1)^2 - 4(2y)(6y - 2) \geq 0 \] ### Step 5: Expand and simplify the discriminant Expanding the discriminant: \[ (3y - 1)^2 = 9y^2 - 6y + 1 \] And for the second term: \[ 4(2y)(6y - 2) = 48y^2 - 16y \] Combining these gives: \[ 9y^2 - 6y + 1 - (48y^2 - 16y) \geq 0 \] This simplifies to: \[ -39y^2 + 10y + 1 \geq 0 \] ### Step 6: Rearranging the inequality Rearranging gives: \[ 39y^2 - 10y - 1 \leq 0 \] ### Step 7: Find the roots of the quadratic Using the quadratic formula \( y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 39, b = -10, c = -1 \): \[ y = \frac{10 \pm \sqrt{(-10)^2 - 4 \cdot 39 \cdot (-1)}}{2 \cdot 39} \] Calculating the discriminant: \[ 100 + 156 = 256 \] Thus: \[ y = \frac{10 \pm 16}{78} \] This gives us two roots: \[ y_1 = \frac{26}{78} = \frac{1}{3}, \quad y_2 = \frac{-6}{78} = -\frac{1}{13} \] ### Step 8: Determine the intervals The quadratic \( 39y^2 - 10y - 1 \) opens upwards, so it is less than or equal to zero between the roots: \[ -\frac{1}{13} \leq y \leq \frac{1}{3} \] ### Step 9: Identify the greatest value The greatest value of \( y \) occurs at the upper bound: \[ \text{Greatest value of } y = \frac{1}{3} \] ### Conclusion Thus, the greatest value of the expression \( \frac{x + 2}{2x^2 + 3x + 6} \) is: \[ \boxed{\frac{1}{3}} \]

To find the greatest value of the expression \( y = \frac{x+2}{2x^2 + 3x + 6} \), we will follow these steps: ### Step 1: Set up the expression We start with the expression: \[ y = \frac{x + 2}{2x^2 + 3x + 6} \] ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

If x is real, then the value of the expression (x^2+14x+9)/(x^2+2x+3) lies between (a) 5 and 4 (b) 5 and -4 (c) -5 and 4 (d) none of these

If x in R , the least value of the expression (x^(2)-6x+5)/(x^(2)+2x+1) is

If x is real, then the value of the expression (x^2+14 x+9)/(x^2+2x+3) lies between

If x is real, then the minimum value of the expression x^2-8x+17 is

If x is real, then the minimum value of the expression x^2-8x+17 is

If G and L are the greatest and least values of the expression (2x^(2)-3x+2)/(2x^(2)+3x+2), x epsilonR respectively. G and L are the roots of the equation

If G and L are the greatest and least values of the expression (2x^(2)-3x+2)/(2x^(2)+3x+2), x epsilonR respectively. If L^(2)ltlamdaltG^(2), lamda epsilon N the sum of all values of lamda is

If G and L are the greatest and least values of the expression (2x^(2)-3x+2)/(2x^(2)+3x+2), x epsilonR respectively. The least value of G^(100)+L^(100) is (a) 2^(100) (b) 3^(100) (c) 7^(100) (d) none of these

The expression 6x-5x^(2)-3x^(2) y is

If x is real, prove that the value of the expression ((x-1)(x+3))/((x-2)(x+4)) cannot be between (4)/(9) and 1.

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. If 'x' is real, then greatest value of the expression, (x+2)/(2x^(2)+3...

    Text Solution

    |

  2. The least positive vlaue of the parameter 'a' for which there exist at...

    Text Solution

    |

  3. The locus of the midpoint of a chord of the circle x^2+y^2=4 which sub...

    Text Solution

    |

  4. If f(x)=x + tan x and f si the inverse of g, then g'(x) equals

    Text Solution

    |

  5. Tangents PA and PB are drawn to parabola y^(2)=4x from any arbitrary p...

    Text Solution

    |

  6. If lim(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" ...

    Text Solution

    |

  7. Eccentricity of ellipse 2(x-y+1)^(2)+3(x+y+2)^(2)=5 is

    Text Solution

    |

  8. If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y. Then which ...

    Text Solution

    |

  9. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  10. tan^(-1)(sinx)=sin^(-1)(tanx) holds true for

    Text Solution

    |

  11. The function f(x) = (x^(2) - 1)|x^(2) - 3x + 3|+cos (|x|) is not diffe...

    Text Solution

    |

  12. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  13. If the normals at (x(i),y(i)) i=1,2,3,4 to the rectangular hyperbola x...

    Text Solution

    |

  14. Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le...

    Text Solution

    |

  15. The sum of the roots of the equation tan^(-1)(x+3)-tan^(-1)(x-3)="sin"...

    Text Solution

    |

  16. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  17. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  18. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then

    Text Solution

    |

  19. For the curve y=4x^3-2x^5, find all the points at which the tangents p...

    Text Solution

    |

  20. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  21. If y + b = m(1)(x + a) and y + b = m(2)(x+a) are two tangents to the p...

    Text Solution

    |