Home
Class 12
MATHS
If x in R , the numbers 2^(1+x)+2^(1-x)...

If `x in R ,` the numbers `2^(1+x)+2^(1-x), b//2,36^x+36^(-x)` form an A.P., then `b` may lie in the interval `[12 ,oo)` b. `[6,oo)` c. `(-oo,6]` d. `[6, 12]`

A

`[12, oo)`

B

`[6, oo)`

C

`(-oo, 6]`

D

`[6, 12]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the value of \( b \) such that the numbers \( 2^{1+x} + 2^{1-x} \), \( \frac{b}{2} \), and \( 36^x + 36^{-x} \) form an arithmetic progression (A.P.). ### Step-by-step Solution: 1. **Identify the terms of the A.P.**: Let: - \( a = 2^{1+x} + 2^{1-x} \) - \( b = \frac{b}{2} \) - \( c = 36^x + 36^{-x} \) 2. **Use the property of A.P.**: For three numbers to be in A.P., the condition is: \[ 2b = a + c \] Substituting the values of \( a \) and \( c \): \[ 2 \cdot \frac{b}{2} = (2^{1+x} + 2^{1-x}) + (36^x + 36^{-x}) \] Simplifying this gives: \[ b = 2^{1+x} + 2^{1-x} + 36^x + 36^{-x} \] 3. **Simplify \( a \)**: We can rewrite \( a \): \[ a = 2^{1+x} + 2^{1-x} = 2 \cdot (2^x + 2^{-x}) = 2 \cdot 2 \cosh(x \ln 2) = 4 \cosh(x \ln 2) \] 4. **Simplify \( c \)**: Similarly, for \( c \): \[ c = 36^x + 36^{-x} = 2 \cdot (6^x + 6^{-x}) = 2 \cdot 2 \cosh(x \ln 6) = 4 \cosh(x \ln 6) \] 5. **Combine the results**: Now substituting back, we have: \[ b = 4 \cosh(x \ln 2) + 4 \cosh(x \ln 6) \] \[ b = 4 (\cosh(x \ln 2) + \cosh(x \ln 6)) \] 6. **Determine the minimum value of \( b \)**: The minimum value of \( \cosh(t) \) is 1, which occurs when \( t = 0 \). Therefore: \[ \cosh(x \ln 2) \geq 1 \quad \text{and} \quad \cosh(x \ln 6) \geq 1 \] Thus: \[ b \geq 4(1 + 1) = 8 \] 7. **Conclusion**: Therefore, \( b \) must be at least 8. Hence, the possible intervals for \( b \) are: \[ b \in [8, \infty) \] ### Final Answer: The correct option is that \( b \) may lie in the interval \([6, \infty)\) because \( [8, \infty) \) is a subset of \([6, \infty)\).

To solve the problem, we need to determine the value of \( b \) such that the numbers \( 2^{1+x} + 2^{1-x} \), \( \frac{b}{2} \), and \( 36^x + 36^{-x} \) form an arithmetic progression (A.P.). ### Step-by-step Solution: 1. **Identify the terms of the A.P.**: Let: - \( a = 2^{1+x} + 2^{1-x} \) - \( b = \frac{b}{2} \) ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

The values of x for which 1/(1+sqrt(x)), 1/(1-x), 1/(1-sqrt(x) are in A.P. lie in the interval (A) (0,oo) (B) (1,oo) (C) (0,1) (D) none of these

If the function f(x)=2x^2-k x+5 is increasing on [1,\ 2] , then k lies in the interval (a) (-oo,\ 4) (b) (4,\ oo) (c) (-oo,\ 8) (d) (8,\ oo)

If (log)_(0. 3)(x-1)<(log)_(0. 09)(x-1), then x lies in the interval (2,oo) (b) (1,2) (-2,-1) (d) None of these

If (|x-2|)/(x-2)geq0, then x in [2,oo) b. x in (2,oo) c. x in (-oo,2) d. x in (-oo,2]

The function f(x)=cot^(-1)x+x increases in the interval (a) (1,\ oo) (b) (-1,\ oo) (c) (-oo,\ oo) (d) (0,\ oo)

The range of the function f(x)=|x-1| is A. (-oo,0) B. [0,oo) C. (0,oo) D. R

For x^2-(a+3)|x|+4=0 to have real solutions, the range of a is a. (-oo,-7]uu[1,oo) b. (-3,oo) c. (-oo,-7) d. [1,oo)

x^2/(r^2-r-6)+y^2/(r^2-6r+5)=1 will represent ellipse if r lies in the interval (a).(- oo ,2) (b). (3, oo ) (c). (5, oo ) (d).(1, oo )

If the root of the equation (a-1)(x^2-x+1)^2=(a+1)(x^4+x^2+1) are real and distinct, then the value of a in a. (-oo,3] b. (-oo,-2)uu(2,oo) c. [-2,2] d. [-3,oo)

Show that f(x)=1/(1+x^2) decreases in the interval [0,oo) and increases in the interval (-oo,0]dot

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. If x in R , the numbers 2^(1+x)+2^(1-x), b//2,36^x+36^(-x) form an A....

    Text Solution

    |

  2. The least positive vlaue of the parameter 'a' for which there exist at...

    Text Solution

    |

  3. The locus of the midpoint of a chord of the circle x^2+y^2=4 which sub...

    Text Solution

    |

  4. If f(x)=x + tan x and f si the inverse of g, then g'(x) equals

    Text Solution

    |

  5. Tangents PA and PB are drawn to parabola y^(2)=4x from any arbitrary p...

    Text Solution

    |

  6. If lim(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" ...

    Text Solution

    |

  7. Eccentricity of ellipse 2(x-y+1)^(2)+3(x+y+2)^(2)=5 is

    Text Solution

    |

  8. If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y. Then which ...

    Text Solution

    |

  9. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  10. tan^(-1)(sinx)=sin^(-1)(tanx) holds true for

    Text Solution

    |

  11. The function f(x) = (x^(2) - 1)|x^(2) - 3x + 3|+cos (|x|) is not diffe...

    Text Solution

    |

  12. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  13. If the normals at (x(i),y(i)) i=1,2,3,4 to the rectangular hyperbola x...

    Text Solution

    |

  14. Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le...

    Text Solution

    |

  15. The sum of the roots of the equation tan^(-1)(x+3)-tan^(-1)(x-3)="sin"...

    Text Solution

    |

  16. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  17. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  18. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then

    Text Solution

    |

  19. For the curve y=4x^3-2x^5, find all the points at which the tangents p...

    Text Solution

    |

  20. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  21. If y + b = m(1)(x + a) and y + b = m(2)(x+a) are two tangents to the p...

    Text Solution

    |