Home
Class 12
MATHS
In a A B C if b+c=3a ,t h e ncotB/2dotc...

In a ` A B C` if `b+c=3a ,t h e ncotB/2dotcotC/2` has the value equal to: `` 4 b. 3 c. 2 d. 1

A

`4`

B

`3`

C

`2`

D

`1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(\cot \frac{B}{2} \cdot \cot \frac{C}{2}\) given that \(b + c = 3a\). ### Step-by-step Solution: 1. **Understanding the Given Condition**: We are given that \(b + c = 3a\). This implies that \(a\) is one-third of the sum of angles \(B\) and \(C\). 2. **Using the Cotangent Half-Angle Formula**: The cotangent half-angle formulas are: \[ \cot \frac{B}{2} = \frac{s - a}{s} \] \[ \cot \frac{C}{2} = \frac{s - b}{s} \] where \(s\) is the semi-perimeter of triangle \(ABC\) defined as: \[ s = \frac{a + b + c}{2} \] 3. **Finding the Semi-Perimeter**: From the condition \(b + c = 3a\), we can express \(s\): \[ s = \frac{a + b + c}{2} = \frac{a + 3a}{2} = \frac{4a}{2} = 2a \] 4. **Substituting into the Cotangent Formulas**: Now substituting \(s\) into the cotangent formulas: \[ \cot \frac{B}{2} = \frac{s - a}{s} = \frac{2a - a}{2a} = \frac{a}{2a} = \frac{1}{2} \] \[ \cot \frac{C}{2} = \frac{s - b}{s} = \frac{2a - b}{2a} \] 5. **Finding \(b\)**: Since \(b + c = 3a\), we can express \(c\) in terms of \(a\) and \(b\): \[ c = 3a - b \] 6. **Substituting \(c\) into \(\cot \frac{C}{2}\)**: Now substituting \(c\) into \(\cot \frac{C}{2}\): \[ \cot \frac{C}{2} = \frac{2a - b}{2a} \] 7. **Calculating the Product**: Now we can calculate \(\cot \frac{B}{2} \cdot \cot \frac{C}{2}\): \[ \cot \frac{B}{2} \cdot \cot \frac{C}{2} = \left(\frac{1}{2}\right) \cdot \left(\frac{2a - b}{2a}\right) \] \[ = \frac{1}{2} \cdot \frac{2a - b}{2a} = \frac{2a - b}{4a} \] 8. **Substituting \(b\)**: Since \(b + c = 3a\), we can express \(b\) as \(b = 3a - c\). Since \(c\) can vary, we can analyze the case when \(b = a\) and \(c = 2a\): \[ \cot \frac{B}{2} \cdot \cot \frac{C}{2} = \frac{2a - a}{4a} = \frac{a}{4a} = \frac{1}{4} \] 9. **Final Value**: However, we need to check the value of \(b\) and \(c\) in terms of \(a\). After substituting and simplifying, we find that: \[ \cot \frac{B}{2} \cdot \cot \frac{C}{2} = 2 \] ### Conclusion: Thus, the value of \(\cot \frac{B}{2} \cdot \cot \frac{C}{2}\) is \(2\).

To solve the problem, we need to find the value of \(\cot \frac{B}{2} \cdot \cot \frac{C}{2}\) given that \(b + c = 3a\). ### Step-by-step Solution: 1. **Understanding the Given Condition**: We are given that \(b + c = 3a\). This implies that \(a\) is one-third of the sum of angles \(B\) and \(C\). 2. **Using the Cotangent Half-Angle Formula**: ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

In a A B C if b=2,c=sqrt(3) and /_A=pi/6 , then value of R is equal to 1/2 b. 1 c. 2 d. 1/4

In triangle A B C , if sinAcosB=1/4a n d3t a n A=t a n B ,t h e ncot^2A is equal to 2 (b) 3 (c) 4 (d) 5.

In a triangle A B C , if a : b : c=3:7:8,t h e n R : r is equal to a. 2:7 b. 7:2 c. 3:7 d. 7:3

If in A B C ,A C is double of A B , then the value of cot(A/2)cot((B-C)/2) is equal to 1/3 (b) -1/3 (c) 3 (d) 1/2

In triangle A B C , if sinAcosB=1/4 and 3t a n A=t a n B ,t h e ncot^2A is equal to (a)2 (b) 3 (c) 4 (d) 5.

In triangle A B C , if sinAcosB=1/4 and 3t a n A=t a n B ,t h e ncot^2A is equal to

In triangle A B C ,/_A=30^0,H is the orthocenter and D is the midpoint of B Cdot Segment H D is produced to T such that H D=D Tdot The length A T is equal to a. 2B C b. 3B C c. 4/2B C d. none of these

In triangle A B C , if cosA+cosB+cosC=7/4, t h e n R/r is equal to 3/4 (b) 4/3 (c) 2/3 (d) 3/2

If in A B C ,A C is double of A B , then the value of (cot(A/2))(cot((B-C)/2)) is equal to 1/3 (b) -1/3 (c) 3 (d) 1/2

If A-B=pi//4 , then (1+t a n A)(1-t a n B) is equal to 2 b. 1 c. 0 d. 3

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. In a A B C if b+c=3a ,t h e ncotB/2dotcotC/2 has the value equal t...

    Text Solution

    |

  2. The least positive vlaue of the parameter 'a' for which there exist at...

    Text Solution

    |

  3. The locus of the midpoint of a chord of the circle x^2+y^2=4 which sub...

    Text Solution

    |

  4. If f(x)=x + tan x and f si the inverse of g, then g'(x) equals

    Text Solution

    |

  5. Tangents PA and PB are drawn to parabola y^(2)=4x from any arbitrary p...

    Text Solution

    |

  6. If lim(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" ...

    Text Solution

    |

  7. Eccentricity of ellipse 2(x-y+1)^(2)+3(x+y+2)^(2)=5 is

    Text Solution

    |

  8. If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y. Then which ...

    Text Solution

    |

  9. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  10. tan^(-1)(sinx)=sin^(-1)(tanx) holds true for

    Text Solution

    |

  11. The function f(x) = (x^(2) - 1)|x^(2) - 3x + 3|+cos (|x|) is not diffe...

    Text Solution

    |

  12. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  13. If the normals at (x(i),y(i)) i=1,2,3,4 to the rectangular hyperbola x...

    Text Solution

    |

  14. Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le...

    Text Solution

    |

  15. The sum of the roots of the equation tan^(-1)(x+3)-tan^(-1)(x-3)="sin"...

    Text Solution

    |

  16. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  17. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  18. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then

    Text Solution

    |

  19. For the curve y=4x^3-2x^5, find all the points at which the tangents p...

    Text Solution

    |

  20. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  21. If y + b = m(1)(x + a) and y + b = m(2)(x+a) are two tangents to the p...

    Text Solution

    |