Home
Class 12
MATHS
The number of integers satisfying the in...

The number of integers satisfying the inequation `|x-1|le[(sqrt(2)+1)^(6)+(sqrt(2)-1)^(6)]` where `[.]` denotes greatest integer function is greater than and equal to :

A

`198`

B

`396`

C

`397`

D

`398`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the number of integers satisfying the inequality: \[ |x - 1| \leq \left\lfloor (\sqrt{2} + 1)^6 + (\sqrt{2} - 1)^6 \right\rfloor \] ### Step 1: Calculate \((\sqrt{2} + 1)^6 + (\sqrt{2} - 1)^6\) Using the binomial theorem, we can expand both terms: 1. **Expansion of \((\sqrt{2} + 1)^6\)**: \[ (\sqrt{2} + 1)^6 = \sum_{k=0}^{6} \binom{6}{k} (\sqrt{2})^{6-k} (1)^k \] 2. **Expansion of \((\sqrt{2} - 1)^6\)**: \[ (\sqrt{2} - 1)^6 = \sum_{k=0}^{6} \binom{6}{k} (\sqrt{2})^{6-k} (-1)^k \] ### Step 2: Combine the expansions When we add these two expansions, the terms with odd powers of \((\sqrt{2})\) will cancel out, and we will be left with only the even powers: \[ (\sqrt{2} + 1)^6 + (\sqrt{2} - 1)^6 = 2 \left( \binom{6}{0} (\sqrt{2})^6 + \binom{6}{2} (\sqrt{2})^4 + \binom{6}{4} (\sqrt{2})^2 + \binom{6}{6} (1)^0 \right) \] ### Step 3: Calculate the coefficients 1. **Calculate each term**: - \(\binom{6}{0} = 1\) - \(\binom{6}{2} = 15\) - \(\binom{6}{4} = 15\) - \(\binom{6}{6} = 1\) 2. **Substituting values**: \[ = 2 \left( 1 \cdot 2^3 + 15 \cdot 2^2 + 15 \cdot 2 + 1 \right) \] \[ = 2 \left( 8 + 60 + 30 + 1 \right) = 2 \cdot 99 = 198 \] ### Step 4: Apply the greatest integer function Now we apply the greatest integer function: \[ \left\lfloor 198 \right\rfloor = 198 \] ### Step 5: Solve the inequality Now we need to solve the inequality: \[ |x - 1| \leq 198 \] This can be rewritten as: \[ -198 \leq x - 1 \leq 198 \] ### Step 6: Rearranging the inequality Adding 1 to all parts of the inequality gives: \[ -197 \leq x \leq 199 \] ### Step 7: Count the integers The integers satisfying this inequality are: \[ -197, -196, \ldots, 0, 1, \ldots, 199 \] To count the total number of integers: - From \(-197\) to \(0\) there are \(198\) integers. - From \(1\) to \(199\) there are \(199\) integers. Thus, the total number of integers is: \[ 198 + 199 = 397 \] ### Final Answer The number of integers satisfying the given inequality is: \[ \boxed{397} \]

To solve the problem, we need to find the number of integers satisfying the inequality: \[ |x - 1| \leq \left\lfloor (\sqrt{2} + 1)^6 + (\sqrt{2} - 1)^6 \right\rfloor \] ### Step 1: Calculate \((\sqrt{2} + 1)^6 + (\sqrt{2} - 1)^6\) ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

The number of integers satisfying the inequality is x/(x+6)<=1/x

Lt_(xto2) [x] where [*] denotes the greatest integer function is equal to

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

int_(-1)^(2)[([x])/(1+x^(2))]dx , where [.] denotes the greatest integer function, is equal to

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

Range of f(x)=[1/(log(x^(2)+e))]+1/sqrt(1+x^(2)), where [*] denotes greatest integer function, is

f(x)=cos^-1sqrt(log_([x]) ((|x|)/x)) where [.] denotes the greatest integer function

lim_(xto1) (xsin(x-[x]))/(x-1) , where [.] denotes the greatest integer function, is equal to

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then the

The domain of the function f(x)=(1)/(sqrt((x)-[x])) where [*] denotes the greatest integer function is

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. The number of integers satisfying the inequation |x-1|le[(sqrt(2)+1)^(...

    Text Solution

    |

  2. The least positive vlaue of the parameter 'a' for which there exist at...

    Text Solution

    |

  3. The locus of the midpoint of a chord of the circle x^2+y^2=4 which sub...

    Text Solution

    |

  4. If f(x)=x + tan x and f si the inverse of g, then g'(x) equals

    Text Solution

    |

  5. Tangents PA and PB are drawn to parabola y^(2)=4x from any arbitrary p...

    Text Solution

    |

  6. If lim(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" ...

    Text Solution

    |

  7. Eccentricity of ellipse 2(x-y+1)^(2)+3(x+y+2)^(2)=5 is

    Text Solution

    |

  8. If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y. Then which ...

    Text Solution

    |

  9. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  10. tan^(-1)(sinx)=sin^(-1)(tanx) holds true for

    Text Solution

    |

  11. The function f(x) = (x^(2) - 1)|x^(2) - 3x + 3|+cos (|x|) is not diffe...

    Text Solution

    |

  12. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  13. If the normals at (x(i),y(i)) i=1,2,3,4 to the rectangular hyperbola x...

    Text Solution

    |

  14. Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le...

    Text Solution

    |

  15. The sum of the roots of the equation tan^(-1)(x+3)-tan^(-1)(x-3)="sin"...

    Text Solution

    |

  16. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  17. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  18. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then

    Text Solution

    |

  19. For the curve y=4x^3-2x^5, find all the points at which the tangents p...

    Text Solution

    |

  20. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  21. If y + b = m(1)(x + a) and y + b = m(2)(x+a) are two tangents to the p...

    Text Solution

    |