Home
Class 12
MATHS
Find the remainder when x=11^(13^(15…….^...

Find the remainder when `x=11^(13^(15…….^(91)))` divided by 120.

A

`1`

B

`0`

C

`119`

D

`11`

Text Solution

AI Generated Solution

The correct Answer is:
To find the remainder when \( x = 11^{13^{15^{\cdots^{91}}}} \) is divided by 120, we can follow these steps: ### Step 1: Simplify the exponent We start with \( x = 11^{13^{15^{\cdots^{91}}}} \). The exponent is a tower of powers, which we will denote as \( n = 13^{15^{\cdots^{91}}} \). ### Step 2: Use properties of modular arithmetic We will use the fact that \( 11^{\phi(120)} \equiv 1 \mod 120 \), where \( \phi \) is the Euler's totient function. First, we need to calculate \( \phi(120) \). ### Step 3: Calculate \( \phi(120) \) The prime factorization of 120 is: \[ 120 = 2^3 \times 3^1 \times 5^1 \] Using the formula for the totient function: \[ \phi(120) = 120 \left(1 - \frac{1}{2}\right)\left(1 - \frac{1}{3}\right)\left(1 - \frac{1}{5}\right) \] Calculating this: \[ \phi(120) = 120 \times \frac{1}{2} \times \frac{2}{3} \times \frac{4}{5} = 120 \times \frac{8}{30} = 32 \] ### Step 4: Reduce the exponent modulo \( \phi(120) \) Now we need to find \( n \mod 32 \). We will simplify \( n = 13^{15^{\cdots^{91}}} \mod 32 \). ### Step 5: Calculate \( 13 \mod 32 \) First, we find \( 13 \mod 32 \), which is simply 13. ### Step 6: Calculate \( 15^{\cdots^{91}} \mod 16 \) Next, we need to reduce the exponent \( 15^{17^{\cdots^{91}}} \mod 16 \) because \( \phi(32) = 16 \). ### Step 7: Calculate \( 15 \mod 16 \) Since \( 15 \equiv -1 \mod 16 \), we need to evaluate the exponent \( 17^{19^{\cdots^{91}}} \mod 2 \). ### Step 8: Calculate \( 17^{19^{\cdots^{91}}} \mod 2 \) Since any odd number raised to any power remains odd, we have \( 17^{19^{\cdots^{91}}} \equiv 1 \mod 2 \). ### Step 9: Determine the result of \( 15^{\text{odd}} \) Thus, \( 15^{17^{\cdots^{91}}} \equiv 15 \mod 16 \). ### Step 10: Calculate \( n \mod 32 \) Now we have \( n \equiv 13^{15} \mod 32 \). We can calculate \( 13^{15} \mod 32 \) using successive squaring: - \( 13^1 \equiv 13 \) - \( 13^2 \equiv 169 \equiv 9 \mod 32 \) - \( 13^4 \equiv 9^2 \equiv 81 \equiv 17 \mod 32 \) - \( 13^8 \equiv 17^2 \equiv 289 \equiv 1 \mod 32 \) Thus, \( 13^{15} = 13^8 \cdot 13^4 \cdot 13^2 \cdot 13^1 \equiv 1 \cdot 17 \cdot 9 \cdot 13 \mod 32 \). Calculating this: \[ 17 \cdot 9 = 153 \equiv 25 \mod 32 \] \[ 25 \cdot 13 = 325 \equiv 5 \mod 32 \] ### Step 11: Calculate \( 11^n \mod 120 \) Now we have \( n \equiv 5 \mod 32 \), so we need to calculate \( 11^5 \mod 120 \). Calculating \( 11^5 \): \[ 11^2 = 121 \equiv 1 \mod 120 \] Thus, \[ 11^4 \equiv 1^2 \equiv 1 \mod 120 \] \[ 11^5 \equiv 11^4 \cdot 11 \equiv 1 \cdot 11 \equiv 11 \mod 120 \] ### Final Result The remainder when \( x = 11^{13^{15^{\cdots^{91}}}} \) is divided by 120 is \( \boxed{11} \).

To find the remainder when \( x = 11^{13^{15^{\cdots^{91}}}} \) is divided by 120, we can follow these steps: ### Step 1: Simplify the exponent We start with \( x = 11^{13^{15^{\cdots^{91}}}} \). The exponent is a tower of powers, which we will denote as \( n = 13^{15^{\cdots^{91}}} \). ### Step 2: Use properties of modular arithmetic We will use the fact that \( 11^{\phi(120)} \equiv 1 \mod 120 \), where \( \phi \) is the Euler's totient function. First, we need to calculate \( \phi(120) \). ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

Without performing actual division, find the remainder when 28735429 is divided by 11.

Find the remainder when x^(3)-ax^(2)+6x-a is divided by x - a

Find the remainder when 1690^(2608)+2608^(1690) is divided by 7.

Find the remainder when x^4+x^3-2x^2+x+1 is divided by x-1 .

Without performing actual division, find the remainder when 928174653 is divided by 11.

Find the remainder when sum_(r=1)^(n)r! is divided by 15 , if n ge5 .

Find the remainder when f(x)=x^4-3x^2+4 is divided by g(x)=x-2 is.

Find the remainder when x^3-a x^2+6x-a is divided by x-a .

Find the remainder when the number 9^(100) is divided by 8.

Find the remainder when x=5^(5^(5^(5...))) (24 times 5) is divided by 24.

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. Find the remainder when x=11^(13^(15…….^(91))) divided by 120.

    Text Solution

    |

  2. The least positive vlaue of the parameter 'a' for which there exist at...

    Text Solution

    |

  3. The locus of the midpoint of a chord of the circle x^2+y^2=4 which sub...

    Text Solution

    |

  4. If f(x)=x + tan x and f si the inverse of g, then g'(x) equals

    Text Solution

    |

  5. Tangents PA and PB are drawn to parabola y^(2)=4x from any arbitrary p...

    Text Solution

    |

  6. If lim(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" ...

    Text Solution

    |

  7. Eccentricity of ellipse 2(x-y+1)^(2)+3(x+y+2)^(2)=5 is

    Text Solution

    |

  8. If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y. Then which ...

    Text Solution

    |

  9. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  10. tan^(-1)(sinx)=sin^(-1)(tanx) holds true for

    Text Solution

    |

  11. The function f(x) = (x^(2) - 1)|x^(2) - 3x + 3|+cos (|x|) is not diffe...

    Text Solution

    |

  12. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  13. If the normals at (x(i),y(i)) i=1,2,3,4 to the rectangular hyperbola x...

    Text Solution

    |

  14. Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le...

    Text Solution

    |

  15. The sum of the roots of the equation tan^(-1)(x+3)-tan^(-1)(x-3)="sin"...

    Text Solution

    |

  16. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  17. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  18. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then

    Text Solution

    |

  19. For the curve y=4x^3-2x^5, find all the points at which the tangents p...

    Text Solution

    |

  20. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  21. If y + b = m(1)(x + a) and y + b = m(2)(x+a) are two tangents to the p...

    Text Solution

    |