Home
Class 12
MATHS
Sum of the last 2 digit in sum(r=0)^(101...

Sum of the last `2` digit in `sum_(r=0)^(101)(101-r)!`

A

`4`

B

`8`

C

`0`

D

`5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the sum of the last two digits in the expression \(\sum_{r=0}^{101} (101-r)!\), we can follow these steps: ### Step 1: Write the summation expression The expression can be rewritten as: \[ \sum_{r=0}^{101} (101-r)! = (101-0)! + (101-1)! + (101-2)! + \ldots + (101-101)! \] This simplifies to: \[ 101! + 100! + 99! + \ldots + 0! \] ### Step 2: Identify the factorial terms We know that \(n!\) (for \(n \geq 10\)) will end with at least two zeros because \(10!\) and higher factorials contain the factors \(2\) and \(5\) multiple times. Therefore, we can ignore \(101!\), \(100!\), \(99!\), ..., \(10!\) when looking for the last two digits. ### Step 3: Calculate the last two digits of lower factorials We need to calculate the last two digits of the factorials from \(9!\) down to \(0!\): - \(9! = 362880\) (last two digits: 80) - \(8! = 40320\) (last two digits: 20) - \(7! = 5040\) (last two digits: 40) - \(6! = 720\) (last two digits: 20) - \(5! = 120\) (last two digits: 20) - \(4! = 24\) (last two digits: 24) - \(3! = 6\) (last two digits: 06) - \(2! = 2\) (last two digits: 02) - \(1! = 1\) (last two digits: 01) - \(0! = 1\) (last two digits: 01) ### Step 4: Sum the last two digits of these factorials Now we sum the last two digits: \[ 80 + 20 + 40 + 20 + 20 + 24 + 06 + 02 + 01 + 01 \] Calculating this step by step: 1. \(80 + 20 = 100\) (last two digits: 00) 2. \(00 + 40 = 40\) 3. \(40 + 20 = 60\) 4. \(60 + 20 = 80\) 5. \(80 + 24 = 104\) (last two digits: 04) 6. \(04 + 06 = 10\) 7. \(10 + 02 = 12\) 8. \(12 + 01 = 13\) 9. \(13 + 01 = 14\) ### Step 5: Find the sum of the last two digits The last two digits of the total sum are \(14\). Now we find the sum of these two digits: \[ 1 + 4 = 5 \] ### Final Answer Thus, the sum of the last two digits in the expression is: \[ \boxed{5} \]

To solve the problem of finding the sum of the last two digits in the expression \(\sum_{r=0}^{101} (101-r)!\), we can follow these steps: ### Step 1: Write the summation expression The expression can be rewritten as: \[ \sum_{r=0}^{101} (101-r)! = (101-0)! + (101-1)! + (101-2)! + \ldots + (101-101)! \] This simplifies to: ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

the last two digits in X=sum_(k=1)^100 k!

Find the sum of the series sum_(r=0)^(50)(""^(100-r)C_(25))/(100-r)

Sum of the series sum_(r=1)^(n) (r^(2)+1)r! is

The coefficient of x^(50) in the series sum_(r=1)^(101)rx^(r-1)(1+x)^(101-r) is

The sum of last 3 digits of 3^100 is

The value of the expression (sum_(r=0)^10 "^10 C_r)(sum_(k=0)^10 (-1)^k (^10 C_k)/2^k) is :

The sum of the series sum_(r=0) ^(n) ""^(2n)C_(r), is

The sum of the series sum_(r=0) ^(n) "r."^(2n)C_(r), is

The sum of all digits of n for which sum _(r =1) ^(n ) r 2 ^(r ) = 2+2^(n+10) is :

Sum of the series sum_0^10 (-1)^r 10C_r (1/3^r+8^r/3^(2r)) is

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. Sum of the last 2 digit in sum(r=0)^(101)(101-r)!

    Text Solution

    |

  2. The least positive vlaue of the parameter 'a' for which there exist at...

    Text Solution

    |

  3. The locus of the midpoint of a chord of the circle x^2+y^2=4 which sub...

    Text Solution

    |

  4. If f(x)=x + tan x and f si the inverse of g, then g'(x) equals

    Text Solution

    |

  5. Tangents PA and PB are drawn to parabola y^(2)=4x from any arbitrary p...

    Text Solution

    |

  6. If lim(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" ...

    Text Solution

    |

  7. Eccentricity of ellipse 2(x-y+1)^(2)+3(x+y+2)^(2)=5 is

    Text Solution

    |

  8. If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y. Then which ...

    Text Solution

    |

  9. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  10. tan^(-1)(sinx)=sin^(-1)(tanx) holds true for

    Text Solution

    |

  11. The function f(x) = (x^(2) - 1)|x^(2) - 3x + 3|+cos (|x|) is not diffe...

    Text Solution

    |

  12. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  13. If the normals at (x(i),y(i)) i=1,2,3,4 to the rectangular hyperbola x...

    Text Solution

    |

  14. Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le...

    Text Solution

    |

  15. The sum of the roots of the equation tan^(-1)(x+3)-tan^(-1)(x-3)="sin"...

    Text Solution

    |

  16. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  17. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  18. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then

    Text Solution

    |

  19. For the curve y=4x^3-2x^5, find all the points at which the tangents p...

    Text Solution

    |

  20. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  21. If y + b = m(1)(x + a) and y + b = m(2)(x+a) are two tangents to the p...

    Text Solution

    |