Home
Class 12
MATHS
If alpha, beta are the roots of the equa...

If `alpha, beta` are the roots of the equation `x^(2)-7x+1=0` then value of
`{(1)/((alpha-7)^(2))+(1)/(beta-7)^(2))} - {((alpha^(2)+1)/(beta^(2)+1))+((beta^(2)+1)/(alpha^(2)+1))}` is

A

`0`

B

`1`

C

`47`

D

`17`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression given the roots \( \alpha \) and \( \beta \) of the quadratic equation \( x^2 - 7x + 1 = 0 \). ### Step 1: Find the roots \( \alpha \) and \( \beta \) Using the quadratic formula: \[ \alpha, \beta = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1 \), \( b = -7 \), and \( c = 1 \). Calculating the discriminant: \[ b^2 - 4ac = (-7)^2 - 4 \cdot 1 \cdot 1 = 49 - 4 = 45 \] Thus, the roots are: \[ \alpha, \beta = \frac{7 \pm \sqrt{45}}{2} = \frac{7 \pm 3\sqrt{5}}{2} \] ### Step 2: Calculate \( \frac{1}{(\alpha - 7)^2} + \frac{1}{(\beta - 7)^2} \) First, we find \( \alpha - 7 \) and \( \beta - 7 \): \[ \alpha - 7 = \frac{7 + 3\sqrt{5}}{2} - 7 = \frac{-7 + 3\sqrt{5}}{2} \] \[ \beta - 7 = \frac{7 - 3\sqrt{5}}{2} - 7 = \frac{-7 - 3\sqrt{5}}{2} \] Now, we compute \( \frac{1}{(\alpha - 7)^2} \) and \( \frac{1}{(\beta - 7)^2} \): \[ (\alpha - 7)^2 = \left(\frac{-7 + 3\sqrt{5}}{2}\right)^2 = \frac{(-7 + 3\sqrt{5})^2}{4} = \frac{49 - 42\sqrt{5} + 45}{4} = \frac{94 - 42\sqrt{5}}{4} \] \[ (\beta - 7)^2 = \left(\frac{-7 - 3\sqrt{5}}{2}\right)^2 = \frac{(-7 - 3\sqrt{5})^2}{4} = \frac{49 + 42\sqrt{5} + 45}{4} = \frac{94 + 42\sqrt{5}}{4} \] Thus, \[ \frac{1}{(\alpha - 7)^2} = \frac{4}{94 - 42\sqrt{5}}, \quad \frac{1}{(\beta - 7)^2} = \frac{4}{94 + 42\sqrt{5}} \] Adding these fractions: \[ \frac{1}{(\alpha - 7)^2} + \frac{1}{(\beta - 7)^2} = \frac{4(94 + 42\sqrt{5}) + 4(94 - 42\sqrt{5})}{(94 - 42\sqrt{5})(94 + 42\sqrt{5})} \] The numerator simplifies to: \[ 4(188) = 752 \] The denominator simplifies to: \[ (94)^2 - (42\sqrt{5})^2 = 8836 - 8820 = 16 \] Thus, \[ \frac{1}{(\alpha - 7)^2} + \frac{1}{(\beta - 7)^2} = \frac{752}{16} = 47 \] ### Step 3: Calculate \( \frac{\alpha^2 + 1}{\beta^2 + 1} + \frac{\beta^2 + 1}{\alpha^2 + 1} \) Using the equations derived from the quadratic: \[ \alpha^2 = 7\alpha - 1 \quad \text{and} \quad \beta^2 = 7\beta - 1 \] Thus, \[ \alpha^2 + 1 = 7\alpha \quad \text{and} \quad \beta^2 + 1 = 7\beta \] Now substituting: \[ \frac{7\alpha}{7\beta} + \frac{7\beta}{7\alpha} = \frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^2 + \beta^2}{\alpha\beta} \] Using \( \alpha + \beta = 7 \) and \( \alpha \beta = 1 \): \[ \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 49 - 2 = 47 \] Thus, \[ \frac{\alpha^2 + \beta^2}{\alpha\beta} = \frac{47}{1} = 47 \] ### Step 4: Combine results Now we can combine the results: \[ \frac{1}{(\alpha - 7)^2} + \frac{1}{(\beta - 7)^2} - \left( \frac{\alpha^2 + 1}{\beta^2 + 1} + \frac{\beta^2 + 1}{\alpha^2 + 1} \right) = 47 - 47 = 0 \] ### Final Answer The value of the expression is \( \boxed{0} \).

To solve the problem, we need to evaluate the expression given the roots \( \alpha \) and \( \beta \) of the quadratic equation \( x^2 - 7x + 1 = 0 \). ### Step 1: Find the roots \( \alpha \) and \( \beta \) Using the quadratic formula: \[ \alpha, \beta = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1 \), \( b = -7 \), and \( c = 1 \). ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

If alpha,beta are the roots of the equation x^(2)+x+1=0 , find the value of alpha^(3)-beta^(3) .

If alpha and beta are roots of the equation 2x^(2)-3x-5=0 , then the value of (1)/(alpha)+(1)/(beta) is

If alpha and beta are the roots of the quadratic equation ax^(2)+bx+1 , then the value of (1)/(alpha)+(1)/(beta) is

If alpha, beta are the roots of the equation ax^2 + bx +c=0 then the value of (1+alpha+alpha^2)(1+beta+beta^2) is

If alpha and beta are the roots of the equation x^2+4x + 1=0(alpha > beta) then find the value of 1/(alpha)^2 + 1/(beta)^2

If alpha,beta are the roots of the equation x^(2)-2x-1=0 , then what is the value of alpha^(2)beta^(-2)+alpha^(-2)beta^(2) ?

If alpha,beta be the roots of the equation 3x^2+2x+1=0, then find value of ((1-alpha)/(1+alpha))^3+((1-beta)/(1+beta))^3

If alpha,beta are the roots of the equation 8x^2-3x+27=0, then the value of (alpha^2/beta)^(1/3)+(beta^2/alpha)^(1/3) is

If alpha and beta are roots of the equation x^(2)-2x+1=0 , then the value of (alpha)/(beta)+(beta)/(alpha) is

If alpha and beta are the roots of the equations x^(2)-2x-1=0 , then what is the value of alpha^(2)beta^(-2)+beta^(2)alpha^(-2)

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. If alpha, beta are the roots of the equation x^(2)-7x+1=0 then value o...

    Text Solution

    |

  2. The least positive vlaue of the parameter 'a' for which there exist at...

    Text Solution

    |

  3. The locus of the midpoint of a chord of the circle x^2+y^2=4 which sub...

    Text Solution

    |

  4. If f(x)=x + tan x and f si the inverse of g, then g'(x) equals

    Text Solution

    |

  5. Tangents PA and PB are drawn to parabola y^(2)=4x from any arbitrary p...

    Text Solution

    |

  6. If lim(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" ...

    Text Solution

    |

  7. Eccentricity of ellipse 2(x-y+1)^(2)+3(x+y+2)^(2)=5 is

    Text Solution

    |

  8. If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y. Then which ...

    Text Solution

    |

  9. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  10. tan^(-1)(sinx)=sin^(-1)(tanx) holds true for

    Text Solution

    |

  11. The function f(x) = (x^(2) - 1)|x^(2) - 3x + 3|+cos (|x|) is not diffe...

    Text Solution

    |

  12. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  13. If the normals at (x(i),y(i)) i=1,2,3,4 to the rectangular hyperbola x...

    Text Solution

    |

  14. Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le...

    Text Solution

    |

  15. The sum of the roots of the equation tan^(-1)(x+3)-tan^(-1)(x-3)="sin"...

    Text Solution

    |

  16. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  17. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  18. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then

    Text Solution

    |

  19. For the curve y=4x^3-2x^5, find all the points at which the tangents p...

    Text Solution

    |

  20. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  21. If y + b = m(1)(x + a) and y + b = m(2)(x+a) are two tangents to the p...

    Text Solution

    |