Home
Class 12
MATHS
The value of [(0.16)^(log(2.5)(1/3+1/3^2...

The value of `[(0.16)^(log_(2.5)(1/3+1/3^2+1/3^3+….+oo))]^(1/2)` is a) 1 b) 2 c) 3 d) -1

A

`1`

B

`2`

C

`3`

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\left[(0.16)^{\log_{2.5}\left(\frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^3} + \ldots\right)}\right]^{\frac{1}{2}}\), we will follow these steps: ### Step 1: Calculate the sum of the infinite series The series \(\frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^3} + \ldots\) is a geometric series where the first term \(a = \frac{1}{3}\) and the common ratio \(r = \frac{1}{3}\). The sum \(S\) of an infinite geometric series is given by the formula: \[ S = \frac{a}{1 - r} \] Substituting the values: \[ S = \frac{\frac{1}{3}}{1 - \frac{1}{3}} = \frac{\frac{1}{3}}{\frac{2}{3}} = \frac{1}{2} \] **Hint:** Remember that the sum of an infinite geometric series converges when the absolute value of the common ratio is less than 1. ### Step 2: Substitute the sum into the logarithm Now we substitute this sum into the logarithmic expression: \[ \log_{2.5}\left(\frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^3} + \ldots\right) = \log_{2.5}\left(\frac{1}{2}\right) \] **Hint:** Ensure you understand how to evaluate logarithms and how to substitute values into them. ### Step 3: Rewrite \(0.16\) in a simpler form Next, we rewrite \(0.16\): \[ 0.16 = \frac{16}{100} = \frac{4}{25} \] **Hint:** Converting decimals to fractions can simplify calculations. ### Step 4: Substitute into the expression Now we can substitute this back into our original expression: \[ \left[\left(\frac{4}{25}\right)^{\log_{2.5}\left(\frac{1}{2}\right)}\right]^{\frac{1}{2}} = \left(\frac{4}{25}\right)^{\frac{1}{2} \log_{2.5}\left(\frac{1}{2}\right)} \] **Hint:** Pay attention to the properties of exponents when simplifying expressions. ### Step 5: Use logarithm properties Using the property \(a^{\log_b(c)} = c^{\log_b(a)}\), we can rewrite: \[ \left(\frac{4}{25}\right)^{\frac{1}{2} \log_{2.5}\left(\frac{1}{2}\right)} = \left(\frac{1}{2}\right)^{\log_{2.5}\left(\frac{4}{25}\right)} \] **Hint:** Familiarize yourself with logarithmic identities to manipulate expressions effectively. ### Step 6: Evaluate the logarithm Now we evaluate \(\log_{2.5}\left(\frac{4}{25}\right)\): \[ \frac{4}{25} = \frac{2^2}{5^2} \implies \log_{2.5}\left(\frac{4}{25}\right) = \log_{2.5}(2^2) - \log_{2.5}(5^2) = 2\log_{2.5}(2) - 2\log_{2.5}(5) \] **Hint:** Break down logarithms into simpler components to evaluate them. ### Step 7: Final simplification Putting everything together: \[ \left(\frac{1}{2}\right)^{\log_{2.5}\left(\frac{4}{25}\right)} = \left(\frac{1}{2}\right)^{2\log_{2.5}(2) - 2\log_{2.5}(5)} \] This simplifies to: \[ \left(\frac{1}{2}\right)^{\log_{2.5}(2^2) - \log_{2.5}(5^2)} = \left(\frac{1}{2}\right)^{\log_{2.5}\left(\frac{4}{25}\right)} \] ### Step 8: Evaluate the entire expression Finally, we can evaluate: \[ \left(\frac{1}{2}\right)^{-2} = 2^2 = 4 \] Thus, the value of the original expression is: \[ \boxed{2} \]

To solve the expression \(\left[(0.16)^{\log_{2.5}\left(\frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^3} + \ldots\right)}\right]^{\frac{1}{2}}\), we will follow these steps: ### Step 1: Calculate the sum of the infinite series The series \(\frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^3} + \ldots\) is a geometric series where the first term \(a = \frac{1}{3}\) and the common ratio \(r = \frac{1}{3}\). The sum \(S\) of an infinite geometric series is given by the formula: \[ S = \frac{a}{1 - r} ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

The value of (0.16)^("log"_(2.5)((1)/(3) + (1)/(3^(2)) + (1)/(3^(3)) + …."to" oo)) , is

4 1/3-2 1/3= (a) 2 1/3 (b) 2 (c) 3 1/3 (d) 1/2

The value of (1+2(log)_3 2)/((1+(log)_3 2)^2)+((log)_6 2)^2 is 2 (b) 3 (c) 4 (d) 1

The value of (1+2(log_3 2)/((1+(log)_3 2)^2)+((log)_6 2)^2 is 2 (b) 3 (c) 4 (d) 1

The value of 64^(-1/3)\ (64^(1/3)-64^(2/3)), is (a) 1 (b) 1/3 (c) -3 (d) -2

The value of (lim)_(x->(3pi)/4)(1+t a n x1/3)/(1-2cos^2x) is (a) -1//2 (b.) -2//3 (c). -3//2 (d). -1//3

(2^-1+3^-1+5^-1)^0 is equals to: a) 2 b) 3 c)5 d)1

Value of lim_(ntooo)(1+1/3)(1+1/(3^2))(1+1/(3^4))(1+1/(3^8))oo is equal to 3 b. 6/5 c. 3/2 d. none of these

The value of lim_(nto oo)(1^(3)+2^(3)+3^(3)+……..+n^(3))/((n^(2)+1)^(2))

Value of (1+1/3)(1+1/(3^2))(1+1/(3^4))(1+1/(3^8))........oo is equal to a. 3 b. 6/5 c. 3/2 d. none of these

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. The value of [(0.16)^(log(2.5)(1/3+1/3^2+1/3^3+….+oo))]^(1/2) is a) 1 ...

    Text Solution

    |

  2. The least positive vlaue of the parameter 'a' for which there exist at...

    Text Solution

    |

  3. The locus of the midpoint of a chord of the circle x^2+y^2=4 which sub...

    Text Solution

    |

  4. If f(x)=x + tan x and f si the inverse of g, then g'(x) equals

    Text Solution

    |

  5. Tangents PA and PB are drawn to parabola y^(2)=4x from any arbitrary p...

    Text Solution

    |

  6. If lim(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" ...

    Text Solution

    |

  7. Eccentricity of ellipse 2(x-y+1)^(2)+3(x+y+2)^(2)=5 is

    Text Solution

    |

  8. If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y. Then which ...

    Text Solution

    |

  9. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  10. tan^(-1)(sinx)=sin^(-1)(tanx) holds true for

    Text Solution

    |

  11. The function f(x) = (x^(2) - 1)|x^(2) - 3x + 3|+cos (|x|) is not diffe...

    Text Solution

    |

  12. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  13. If the normals at (x(i),y(i)) i=1,2,3,4 to the rectangular hyperbola x...

    Text Solution

    |

  14. Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le...

    Text Solution

    |

  15. The sum of the roots of the equation tan^(-1)(x+3)-tan^(-1)(x-3)="sin"...

    Text Solution

    |

  16. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  17. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  18. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then

    Text Solution

    |

  19. For the curve y=4x^3-2x^5, find all the points at which the tangents p...

    Text Solution

    |

  20. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  21. If y + b = m(1)(x + a) and y + b = m(2)(x+a) are two tangents to the p...

    Text Solution

    |