Home
Class 12
MATHS
The area of triangle formed by the verti...

The area of triangle formed by the vertices `(a, 1/a), (b, 1/b), (c, 1/c)` is (a) `|((a+b)(b+c)(c+a))/(2abc)|` (b) `|((a-b)(b-c)(c-a))/(2abc)|` (c) `|((a-(1)/(a))(b-(1)/(b))(c-(1)/(c )))/(2)|` (d) `|((a-1)(b-1)(c-1))/(2abc)|`

A

(a) `|((a+b)(b+c)(c+a))/(2abc)|`

B

(b) `|((a-b)(b-c)(c-a))/(2abc)|`

C

(c) `|((a-(1)/(a))(b-(1)/(b))(c-(1)/(c )))/(2)|`

D

(d) `|((a-1)(b-1)(c-1))/(2abc)|`

Text Solution

AI Generated Solution

The correct Answer is:
To find the area of the triangle formed by the vertices \((a, \frac{1}{a})\), \((b, \frac{1}{b})\), and \((c, \frac{1}{c})\), we can use the formula for the area of a triangle given by three vertices \((x_1, y_1)\), \((x_2, y_2)\), and \((x_3, y_3)\): \[ \text{Area} = \frac{1}{2} \left| x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \right| \] ### Step 1: Assign the coordinates Let: - \((x_1, y_1) = (a, \frac{1}{a})\) - \((x_2, y_2) = (b, \frac{1}{b})\) - \((x_3, y_3) = (c, \frac{1}{c})\) ### Step 2: Substitute into the area formula Now substitute these coordinates into the area formula: \[ \text{Area} = \frac{1}{2} \left| a\left(\frac{1}{b} - \frac{1}{c}\right) + b\left(\frac{1}{c} - \frac{1}{a}\right) + c\left(\frac{1}{a} - \frac{1}{b}\right) \right| \] ### Step 3: Simplify each term Calculating each term separately: 1. For the first term: \[ a\left(\frac{1}{b} - \frac{1}{c}\right) = a\left(\frac{c-b}{bc}\right) = \frac{a(c-b)}{bc} \] 2. For the second term: \[ b\left(\frac{1}{c} - \frac{1}{a}\right) = b\left(\frac{a-c}{ac}\right) = \frac{b(a-c)}{ac} \] 3. For the third term: \[ c\left(\frac{1}{a} - \frac{1}{b}\right) = c\left(\frac{b-a}{ab}\right) = \frac{c(b-a)}{ab} \] ### Step 4: Combine the terms Now combine these terms: \[ \text{Area} = \frac{1}{2} \left| \frac{a(c-b)}{bc} + \frac{b(a-c)}{ac} + \frac{c(b-a)}{ab} \right| \] ### Step 5: Find a common denominator The common denominator for these fractions is \(abc\): \[ \text{Area} = \frac{1}{2} \left| \frac{a^2c(a-b) + b^2a(b-c) + c^2b(c-a)}{abc} \right| \] ### Step 6: Factor the numerator The numerator can be factored as: \[ (a-b)(b-c)(c-a) \] Thus, we have: \[ \text{Area} = \frac{1}{2} \left| \frac{(a-b)(b-c)(c-a)}{abc} \right| \] ### Final Result Therefore, the area of the triangle is: \[ \text{Area} = \left| \frac{(a-b)(b-c)(c-a)}{2abc} \right| \] ### Conclusion The correct answer is option (b): \[ \text{Area} = \left| \frac{(a-b)(b-c)(c-a)}{2abc} \right| \]

To find the area of the triangle formed by the vertices \((a, \frac{1}{a})\), \((b, \frac{1}{b})\), and \((c, \frac{1}{c})\), we can use the formula for the area of a triangle given by three vertices \((x_1, y_1)\), \((x_2, y_2)\), and \((x_3, y_3)\): \[ \text{Area} = \frac{1}{2} \left| x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \right| \] ### Step 1: Assign the coordinates Let: ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

If (1)/(a)+(1)/(c )=(1)/(2b-a)+(1)/(2b-c) , then

The value of the determinant |(1,a,a^2-bc),(1,b,b^2-ca),(1,c,c^2-ab)| is (A) (a+b+c),(a^2+b^2+c^2) (B) a^3+b^3+c^3-3abc (C) (a-b)(b-c)(c-a) (D) 0

Value of |(1,a,a^2),(1,b,b^2),(1,c,c^2)| is (A) (a-b)(b-c)(c-a) (B) (a^2-b^2)(b^2-c^2)(c^2-a^2) (C) (a-b+c)(b-c+a)(c+a-b) (D) none of these

Prove that =|1 1 1a b c b c+a^2a c+b^2a b+c^2|=2(a-b)(b-c)(c-a)

Prove that Delta = |{:(1,,1,,1),(a,,b,,c),(bc+a^(2),,ac+b^(2),,ab+c^(2)):}| = 2(a-b)(b-c)(c-a)

The value of |{:(1+a,b,c),(a,1+b,c),(a,b,1+c):}| is

If a+b+c=0 , then (a^2)/(b c)+(b^2)/(c a)+(c^2)/(a b)=?\ (a)0 (b) 1 (c) -1 (d) 3

Prove that: (a+b+c)/(a^(-1)\ b^(-1)+b^(-1)\ c^(-1)+c^(-1)a^(-1))=a b c

|[1/c,1/c,-(a+b)/c^2],[-(b+c)/a^2,1/a,1/a],[(-b(b+c))/(a^2c),(a+2b+c)/(ac),(-b(a+b))/(ac^2)]| is

If the value of the determinant |(a,1, 1) (1,b,1) (1,1,c)| is positive then a. a b c >1 b. a b c> -8 c. a b c -2

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. The area of triangle formed by the vertices (a, 1/a), (b, 1/b), (c, 1/...

    Text Solution

    |

  2. The least positive vlaue of the parameter 'a' for which there exist at...

    Text Solution

    |

  3. The locus of the midpoint of a chord of the circle x^2+y^2=4 which sub...

    Text Solution

    |

  4. If f(x)=x + tan x and f si the inverse of g, then g'(x) equals

    Text Solution

    |

  5. Tangents PA and PB are drawn to parabola y^(2)=4x from any arbitrary p...

    Text Solution

    |

  6. If lim(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" ...

    Text Solution

    |

  7. Eccentricity of ellipse 2(x-y+1)^(2)+3(x+y+2)^(2)=5 is

    Text Solution

    |

  8. If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y. Then which ...

    Text Solution

    |

  9. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  10. tan^(-1)(sinx)=sin^(-1)(tanx) holds true for

    Text Solution

    |

  11. The function f(x) = (x^(2) - 1)|x^(2) - 3x + 3|+cos (|x|) is not diffe...

    Text Solution

    |

  12. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  13. If the normals at (x(i),y(i)) i=1,2,3,4 to the rectangular hyperbola x...

    Text Solution

    |

  14. Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le...

    Text Solution

    |

  15. The sum of the roots of the equation tan^(-1)(x+3)-tan^(-1)(x-3)="sin"...

    Text Solution

    |

  16. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  17. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  18. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then

    Text Solution

    |

  19. For the curve y=4x^3-2x^5, find all the points at which the tangents p...

    Text Solution

    |

  20. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  21. If y + b = m(1)(x + a) and y + b = m(2)(x+a) are two tangents to the p...

    Text Solution

    |