Home
Class 12
MATHS
The number of integral solution of (x^(2...

The number of integral solution of `(x^(2)(3x-4)^(3)(x-2)^(4))/(In(2x-1)(x-5)^(5)(2x-7)^(6))le 0` is :

A

`1`

B

`2`

C

`3`

D

`4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \[ \frac{x^2 (3x - 4)^3 (x - 2)^4}{\ln(2x - 1)(x - 5)^5 (2x - 7)^6} \leq 0, \] we will follow these steps: ### Step 1: Analyze the numerator and denominator The numerator is \(x^2 (3x - 4)^3 (x - 2)^4\). - \(x^2\) is always non-negative (0 or positive). - \((3x - 4)^3\) can be negative or positive depending on the value of \(x\). - \((x - 2)^4\) is always non-negative. Thus, the numerator is non-negative when \(x^2\) and \((x - 2)^4\) are positive, and \((3x - 4)^3\) is negative. The denominator is \(\ln(2x - 1)(x - 5)^5 (2x - 7)^6\). - \(\ln(2x - 1)\) is defined for \(2x - 1 > 0\) or \(x > \frac{1}{2}\). - \((x - 5)^5\) is zero when \(x = 5\) and changes sign at this point. - \((2x - 7)^6\) is always positive (even power). ### Step 2: Find critical points 1. Set \(3x - 4 = 0\) to find when the numerator changes sign: \[ 3x - 4 = 0 \implies x = \frac{4}{3} \approx 1.33. \] 2. The denominator has critical points at: - \(x = 1\) (where \(\ln(2x - 1) = 0\)), - \(x = 5\) (where \((x - 5)^5 = 0\)), - \(x = \frac{7}{2} = 3.5\) (where \((2x - 7)^6 = 0\)). ### Step 3: Determine intervals The critical points divide the number line into intervals: - \((-\infty, \frac{1}{2})\) - \((\frac{1}{2}, \frac{4}{3})\) - \((\frac{4}{3}, 1)\) - \((1, \frac{7}{2})\) - \((\frac{7}{2}, 5)\) - \((5, \infty)\) ### Step 4: Test each interval We will test each interval to see where the expression is less than or equal to zero. 1. **Interval \((-\infty, \frac{1}{2})\)**: Not valid since \(\ln(2x - 1)\) is undefined. 2. **Interval \((\frac{1}{2}, \frac{4}{3})\)**: - Choose \(x = 1\): \[ \text{Numerator: } (3(1) - 4)^3 < 0 \quad \text{Denominator: } \text{positive} \quad \Rightarrow \text{Negative}. \] 3. **Interval \((\frac{4}{3}, 1)\)**: Not valid since \(x = 1\) is excluded. 4. **Interval \((1, \frac{7}{2})\)**: - Choose \(x = 2\): \[ \text{Numerator: } (3(2) - 4)^3 > 0 \quad \text{Denominator: } \text{positive} \quad \Rightarrow \text{Positive}. \] 5. **Interval \((\frac{7}{2}, 5)\)**: - Choose \(x = 4\): \[ \text{Numerator: } (3(4) - 4)^3 > 0 \quad \text{Denominator: } \text{positive} \quad \Rightarrow \text{Positive}. \] 6. **Interval \((5, \infty)\)**: - Choose \(x = 6\): \[ \text{Numerator: } (3(6) - 4)^3 > 0 \quad \text{Denominator: } \text{positive} \quad \Rightarrow \text{Positive}. \] ### Step 5: Identify valid solutions From the analysis, the only interval where the expression is less than or equal to zero is \((\frac{1}{2}, \frac{4}{3})\). The integer solutions in this interval are: - \(x = 1\) (not included), - \(x = 2\) (included), - \(x = 3\) (included). Thus, the integral solutions are \(2\) and \(3\), totaling **two integral solutions**. ### Final Answer The number of integral solutions is **2**.

To solve the inequality \[ \frac{x^2 (3x - 4)^3 (x - 2)^4}{\ln(2x - 1)(x - 5)^5 (2x - 7)^6} \leq 0, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

The number of integral solutions of x^(2)-3x-4 lt 0 , is

The number of positive integral solutions of, (x^2(3x-4)^3(x-2)^4)/((x-5)^2(2x-7)^6)lt=0 is (a)1 (b) 2 (c) 3 (d) 4

Solve ((x-5)^(2)(x+2)^(3)(x-4))/((x-3)^(4))le0

The number of integral solutions of (x+2)/(x^2+1)>1/2 is (A) 4 (B) 5 (C) 3 (D) 2 (E) 6

The number of non-negative integral solutions of x_1+x_2+x_3+4x_4=20 is

Solve ((2x+3)(4-3x)^3(x-4))/((x-2)^2x^5)le0

Solve ((2x+3)(4-3x)^3(x-4))/((x-2)^2x^5)le0

Number of roots of (x^(2)+5x+7)(-x^(2)+3x-4) = 0

lim_(x to 0) ((2x-3)(3x-4))/((4x-5)(5x -6))

The number of real solutions of the equation x^6-x^5+x^4-x^3+x^2-x+1=0 is

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. The number of integral solution of (x^(2)(3x-4)^(3)(x-2)^(4))/(In(2x-1...

    Text Solution

    |

  2. The least positive vlaue of the parameter 'a' for which there exist at...

    Text Solution

    |

  3. The locus of the midpoint of a chord of the circle x^2+y^2=4 which sub...

    Text Solution

    |

  4. If f(x)=x + tan x and f si the inverse of g, then g'(x) equals

    Text Solution

    |

  5. Tangents PA and PB are drawn to parabola y^(2)=4x from any arbitrary p...

    Text Solution

    |

  6. If lim(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" ...

    Text Solution

    |

  7. Eccentricity of ellipse 2(x-y+1)^(2)+3(x+y+2)^(2)=5 is

    Text Solution

    |

  8. If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y. Then which ...

    Text Solution

    |

  9. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  10. tan^(-1)(sinx)=sin^(-1)(tanx) holds true for

    Text Solution

    |

  11. The function f(x) = (x^(2) - 1)|x^(2) - 3x + 3|+cos (|x|) is not diffe...

    Text Solution

    |

  12. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  13. If the normals at (x(i),y(i)) i=1,2,3,4 to the rectangular hyperbola x...

    Text Solution

    |

  14. Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le...

    Text Solution

    |

  15. The sum of the roots of the equation tan^(-1)(x+3)-tan^(-1)(x-3)="sin"...

    Text Solution

    |

  16. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  17. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  18. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then

    Text Solution

    |

  19. For the curve y=4x^3-2x^5, find all the points at which the tangents p...

    Text Solution

    |

  20. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  21. If y + b = m(1)(x + a) and y + b = m(2)(x+a) are two tangents to the p...

    Text Solution

    |