Home
Class 12
MATHS
If a gt b gt 0 are two real numbers, the...

If `a gt b gt 0` are two real numbers, the value of, `sqrt(ab+(a-b)sqrt(ab+(a-b)sqrt(ab+(a-b)sqrt(ab+….))))` is

A

independent of b

B

independent of a

C

independent of both a & b

D

dependent of both a & b

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( y = \sqrt{ab + (a-b) \sqrt{ab + (a-b) \sqrt{ab + (a-b) \sqrt{ab + \ldots}}}} \), we can follow these steps: ### Step 1: Define the Expression Let \( y \) be the value of the expression: \[ y = \sqrt{ab + (a-b) \sqrt{ab + (a-b) \sqrt{ab + (a-b) \sqrt{ab + \ldots}}}} \] This means that the expression inside the square root is also \( y \). ### Step 2: Rewrite the Expression We can rewrite the expression as: \[ y = \sqrt{ab + (a-b) y} \] ### Step 3: Square Both Sides Next, we square both sides to eliminate the square root: \[ y^2 = ab + (a-b) y \] ### Step 4: Rearrange the Equation Rearranging gives us a quadratic equation: \[ y^2 - (a-b)y - ab = 0 \] ### Step 5: Use the Quadratic Formula We can solve this quadratic equation using the quadratic formula: \[ y = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A} \] Here, \( A = 1 \), \( B = -(a-b) \), and \( C = -ab \). Plugging in these values: \[ y = \frac{a-b \pm \sqrt{(a-b)^2 - 4(1)(-ab)}}{2(1)} \] \[ y = \frac{a-b \pm \sqrt{(a-b)^2 + 4ab}}{2} \] ### Step 6: Simplify the Discriminant Now, we simplify the discriminant: \[ (a-b)^2 + 4ab = a^2 - 2ab + b^2 + 4ab = a^2 + 2ab + b^2 = (a+b)^2 \] Thus, we have: \[ y = \frac{a-b \pm (a+b)}{2} \] ### Step 7: Calculate the Possible Values This gives us two possible solutions: 1. \( y = \frac{(a-b) + (a+b)}{2} = \frac{2a}{2} = a \) 2. \( y = \frac{(a-b) - (a+b)}{2} = \frac{-2b}{2} = -b \) ### Step 8: Determine the Valid Solution Since \( y \) represents a square root, it must be non-negative. Therefore, we discard the negative solution: \[ y = a \] ### Conclusion Thus, the value of the expression is: \[ \boxed{a} \] This implies that the value of \( y \) is independent of \( b \).

To solve the expression \( y = \sqrt{ab + (a-b) \sqrt{ab + (a-b) \sqrt{ab + (a-b) \sqrt{ab + \ldots}}}} \), we can follow these steps: ### Step 1: Define the Expression Let \( y \) be the value of the expression: \[ y = \sqrt{ab + (a-b) \sqrt{ab + (a-b) \sqrt{ab + (a-b) \sqrt{ab + \ldots}}}} \] This means that the expression inside the square root is also \( y \). ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

If tanx=(b)/(a) , then find the value of sqrt((a+b)/( a-b ))+sqrt((a-b)/(a+b)).

If tanx=(b)/(a) , then find the value of sqrt((a+b)/( a-b ))+sqrt((a-b)/(a+b)).

If ab=2a+3b, agt0, b gt0 , then the minimum value of ab is

If the equation ax^2+2hxy+by^2+2gx+2fy+c=0 represents a pair of parallel lines, prove that h=sqrt(ab) and gsqrt(b)=fsqrt(a)or (h=-sqrt(ab)and gsqrt(b)=-fsqrt(a)) . The distance between them is 2sqrt((((g^2-ac))/(a(a+b)))) .

If ab=2a + 3b, a>0, b>0, then the minimum value of ab is

Let a, b and c be positive real numbers. Then prove that tan^(-1) sqrt((a(a + b + c))/(bc)) + tan^(-1) sqrt((b (a + b + c))/(ca)) + tan^(-1) sqrt((c(a + b+ c))/(ab)) =' pi'

If tan alpha =(b)/(a), a gt b gt 0 and " if " 0 lt alpha lt (pi)/(4), " then " sqrt((a+b)/(a-b))+sqrt((a-b)/(a+b)) is equal to :

If a is positive and b is one -fourth of a, then what is the value of (a + b)/(sqrt(ab)) ?

If a<0,b>0, then sqrt(a)sqrt(b) is equal to (a) -sqrt(|a|b) (b) sqrt(|a|b)i (c) sqrt(|a|b) (d) none of these

If a and b positive real numbers, which of the following is equivalent to ((2a^(-1)sqrt(b))^(4))/(ab^(-3)) ?

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. If a gt b gt 0 are two real numbers, the value of, sqrt(ab+(a-b)sqrt(...

    Text Solution

    |

  2. The least positive vlaue of the parameter 'a' for which there exist at...

    Text Solution

    |

  3. The locus of the midpoint of a chord of the circle x^2+y^2=4 which sub...

    Text Solution

    |

  4. If f(x)=x + tan x and f si the inverse of g, then g'(x) equals

    Text Solution

    |

  5. Tangents PA and PB are drawn to parabola y^(2)=4x from any arbitrary p...

    Text Solution

    |

  6. If lim(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" ...

    Text Solution

    |

  7. Eccentricity of ellipse 2(x-y+1)^(2)+3(x+y+2)^(2)=5 is

    Text Solution

    |

  8. If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y. Then which ...

    Text Solution

    |

  9. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  10. tan^(-1)(sinx)=sin^(-1)(tanx) holds true for

    Text Solution

    |

  11. The function f(x) = (x^(2) - 1)|x^(2) - 3x + 3|+cos (|x|) is not diffe...

    Text Solution

    |

  12. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  13. If the normals at (x(i),y(i)) i=1,2,3,4 to the rectangular hyperbola x...

    Text Solution

    |

  14. Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le...

    Text Solution

    |

  15. The sum of the roots of the equation tan^(-1)(x+3)-tan^(-1)(x-3)="sin"...

    Text Solution

    |

  16. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  17. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  18. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then

    Text Solution

    |

  19. For the curve y=4x^3-2x^5, find all the points at which the tangents p...

    Text Solution

    |

  20. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  21. If y + b = m(1)(x + a) and y + b = m(2)(x+a) are two tangents to the p...

    Text Solution

    |