Home
Class 12
MATHS
In a DeltaABC, bcos^(2)'(A)/(2) + acos^(...

In a `DeltaABC, bcos^(2)'(A)/(2) + acos^(2)"(B)/(2) = (3)/(2)c`, then `a, c, b` in (with usual notations)

A

`A.P`

B

`G.P`

C

`H.P`

D

`A.G.P.`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given equation: \[ \frac{b \cos^2 \left(\frac{A}{2}\right)}{2} + \frac{a \cos^2 \left(\frac{B}{2}\right)}{2} = \frac{3}{2} c \] ### Step 1: Use the formula for \(\cos^2 \left(\frac{A}{2}\right)\) and \(\cos^2 \left(\frac{B}{2}\right)\) We know that: \[ \cos^2 \left(\frac{A}{2}\right) = \frac{s(s-a)}{bc} \] \[ \cos^2 \left(\frac{B}{2}\right) = \frac{s(s-b)}{ac} \] where \(s\) is the semi-perimeter given by \(s = \frac{a+b+c}{2}\). ### Step 2: Substitute these formulas into the equation Substituting the formulas into the original equation gives: \[ \frac{b \cdot \frac{s(s-a)}{bc}}{2} + \frac{a \cdot \frac{s(s-b)}{ac}}{2} = \frac{3}{2} c \] This simplifies to: \[ \frac{s(s-a)}{2c} + \frac{s(s-b)}{2c} = \frac{3}{2} c \] ### Step 3: Combine the terms on the left side Combining the left side: \[ \frac{s(s-a+s-b)}{2c} = \frac{3}{2} c \] This simplifies to: \[ \frac{s(2s - a - b)}{2c} = \frac{3}{2} c \] ### Step 4: Cross-multiply to eliminate the fraction Cross-multiplying gives: \[ s(2s - a - b) = 3c^2 \] ### Step 5: Substitute \(s\) with \(\frac{a+b+c}{2}\) Now substituting \(s = \frac{a+b+c}{2}\): \[ \frac{a+b+c}{2}(2\cdot\frac{a+b+c}{2} - a - b) = 3c^2 \] This simplifies to: \[ \frac{a+b+c}{2}(c) = 3c^2 \] ### Step 6: Simplify the equation This leads to: \[ (a+b+c)c = 6c^2 \] Assuming \(c \neq 0\), we can divide both sides by \(c\): \[ a + b + c = 6c \] ### Step 7: Rearranging the equation Rearranging gives: \[ a + b = 5c \] ### Step 8: Conclude the relationship This implies that \(a, b, c\) are in arithmetic progression since: 1. \(a + b = 5c\) 2. Thus, \(a + b + c = 6c\) So, we can express \(a\) and \(b\) in terms of \(c\): - Let \(a = 2c\) - Let \(b = 3c\) Thus, \(a, b, c\) are in arithmetic progression. ### Final Result The relationship among \(a, b, c\) is: \[ a + b = 5c \quad \text{(in AP)} \] ---

To solve the problem step by step, we start with the given equation: \[ \frac{b \cos^2 \left(\frac{A}{2}\right)}{2} + \frac{a \cos^2 \left(\frac{B}{2}\right)}{2} = \frac{3}{2} c \] ### Step 1: Use the formula for \(\cos^2 \left(\frac{A}{2}\right)\) and \(\cos^2 \left(\frac{B}{2}\right)\) ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

In a DeltaABC, b cos^(2) (C/2) + c cos^(2) (B/2) is equal to

In a DeltaABC ,a cos^(2)(B/2)+bcos^(2)(A/2) is equal to

In a DeltaABC, cos""(A)/(2)cos""(B)/(2)cos""C/(2) is

In DeltaABC , prove that: (bcos^(2)C)/2+(c cos^(2)B)/2=s

In DeltaABC , prove that: (b+c)cos(B+C)/(2)=acos(B-C)/(2)

In any DeltaABC, sum a^(2) (sin^2 B - sin^2 C) =

In DeltaABC , prove that: a(cos^(2)C/2-cos^(2)B/2)=(b-c).cos^(2)A/2

In a DeltaABC (bsin(C-A))/(c^(2)-a^(2))+(csin(A-B))/(a^(2)-b^(2))=

. In a DeltaABC, If tan (A/2) , tan(B/2), tan (C/2) , are in H.P.,then a,b,c are in

In DeltaABC, acos^(2)C/2+ccos^(2)A/2=(3b)/(2) , then prove that the sides of DeltaABC , are in A.P.

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. In a DeltaABC, bcos^(2)'(A)/(2) + acos^(2)"(B)/(2) = (3)/(2)c, then a,...

    Text Solution

    |

  2. The least positive vlaue of the parameter 'a' for which there exist at...

    Text Solution

    |

  3. The locus of the midpoint of a chord of the circle x^2+y^2=4 which sub...

    Text Solution

    |

  4. If f(x)=x + tan x and f si the inverse of g, then g'(x) equals

    Text Solution

    |

  5. Tangents PA and PB are drawn to parabola y^(2)=4x from any arbitrary p...

    Text Solution

    |

  6. If lim(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" ...

    Text Solution

    |

  7. Eccentricity of ellipse 2(x-y+1)^(2)+3(x+y+2)^(2)=5 is

    Text Solution

    |

  8. If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y. Then which ...

    Text Solution

    |

  9. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  10. tan^(-1)(sinx)=sin^(-1)(tanx) holds true for

    Text Solution

    |

  11. The function f(x) = (x^(2) - 1)|x^(2) - 3x + 3|+cos (|x|) is not diffe...

    Text Solution

    |

  12. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  13. If the normals at (x(i),y(i)) i=1,2,3,4 to the rectangular hyperbola x...

    Text Solution

    |

  14. Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le...

    Text Solution

    |

  15. The sum of the roots of the equation tan^(-1)(x+3)-tan^(-1)(x-3)="sin"...

    Text Solution

    |

  16. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  17. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  18. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then

    Text Solution

    |

  19. For the curve y=4x^3-2x^5, find all the points at which the tangents p...

    Text Solution

    |

  20. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  21. If y + b = m(1)(x + a) and y + b = m(2)(x+a) are two tangents to the p...

    Text Solution

    |