Home
Class 12
MATHS
If log(sinx)(cos x) = (1)/(2), where x i...

If `log_(sinx)(cos x) = (1)/(2)`, where `x in (0, (pi)/(2))`, then the value of `sin x` is equal to-

A

`(1)/(sqrt(3))`

B

`(sqrt(5) - 1)/(2)`

C

`(2)/(sqrt(3))`

D

`(sqrt(5) + 1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \log_{\sin x}(\cos x) = \frac{1}{2} \) where \( x \in (0, \frac{\pi}{2}) \), we will follow these steps: ### Step 1: Rewrite the logarithmic equation Starting with the equation: \[ \log_{\sin x}(\cos x) = \frac{1}{2} \] We can rewrite this using the change of base formula: \[ \frac{\log(\cos x)}{\log(\sin x)} = \frac{1}{2} \] ### Step 2: Cross-multiply Cross-multiplying gives: \[ 2 \log(\cos x) = \log(\sin x) \] ### Step 3: Apply the power rule of logarithms Using the property of logarithms \( n \log(m) = \log(m^n) \), we can rewrite the equation: \[ \log(\cos x) = \log((\sin x)^{1/2}) \] ### Step 4: Remove the logarithm Since the logarithm is one-to-one, we can equate the arguments: \[ \cos x = (\sin x)^{1/2} \] ### Step 5: Square both sides Squaring both sides to eliminate the square root gives: \[ \cos^2 x = \sin x \] ### Step 6: Use the Pythagorean identity Using the identity \( \sin^2 x + \cos^2 x = 1 \), we can substitute \( \cos^2 x \): \[ 1 - \sin^2 x = \sin x \] ### Step 7: Rearrange into a standard quadratic form Rearranging gives us: \[ \sin^2 x + \sin x - 1 = 0 \] ### Step 8: Apply the quadratic formula Using the quadratic formula \( \sin x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \) where \( a = 1, b = 1, c = -1 \): \[ \sin x = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot (-1)}}{2 \cdot 1} \] \[ = \frac{-1 \pm \sqrt{1 + 4}}{2} \] \[ = \frac{-1 \pm \sqrt{5}}{2} \] ### Step 9: Determine the valid solution Since \( x \in (0, \frac{\pi}{2}) \), \( \sin x \) must be positive. Therefore, we take the positive root: \[ \sin x = \frac{-1 + \sqrt{5}}{2} \] ### Final Answer Thus, the value of \( \sin x \) is: \[ \sin x = \frac{\sqrt{5} - 1}{2} \]

To solve the equation \( \log_{\sin x}(\cos x) = \frac{1}{2} \) where \( x \in (0, \frac{\pi}{2}) \), we will follow these steps: ### Step 1: Rewrite the logarithmic equation Starting with the equation: \[ \log_{\sin x}(\cos x) = \frac{1}{2} \] We can rewrite this using the change of base formula: ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

If sinx +cosx=(sqrt7)/(2) , where x in [0, (pi)/(4)], then the value of tan.(x)/(2) is equal to

(sinx+cosx)/(sinx-cos x)-(sec^(2)x+2)/(tan^(2)x-1)= , where x in (0, (pi)/(2))

int_(0)^(pi//2) ( sin x cos x )/( 1+ sin x ) dx is equal to

If sum of the series 1+x log_(|(1-sinx)/(cos x)|)((1+sin x)/(cos x))^(1//2)+x^(2) log_(|(1-sinx)/(cosx)|)((1+sinx)/(cosx))^(1//4)+...oo (wherever defined) is equal to (k(1-x))/((2-x)) , then k is equal to

For 0 lt x lt (pi)/(2) , let P_(mn)(x)=m log_(cos x) ( sin x)+ n log_(cos x)(cotx) , where m, n in {1, 2,...,9} [For example: P_(29)(x)=2log_(cosx)(sinx)+9log_(cos x)( cot x) and " " P_(77)(x)=7 log_(cos x)(sin x)+(7 log_(cos x) ( cot x) ] On the basis of above information, answer the following questions : If P_(34)(x)=P_(22)(x) , then the value of sin x is expressed as ((sqrt(q)-1)/(p)) , then (p+q) equals

Suppose 3 sin ^(-1) ( log _(2) x ) + cos^(-1) ( log _(2) y) =pi //2 " and " sin^(-1) ( log _(2) x ) + 2 cos^(-1) ( log_(2) y) = 11 pi//6 , then the value of x^(-2) + y^(-2) equals

If log_(1/sqrt2) sinx> 0 ,x in [0,4pi] , then the number values of x which are integral multiples of pi/4 ,is

Suppose 3 sin^(-1) ( log _(2) x) + cos^(-1) ( log _(2) y) =pi //2 and sin^(-1) ( log _(2) x ) + 2 cos^(-1) ( log_(2) y) = 11 pi //6 . then the value of 1/x^(-2) + 1/y^(-2) equals .

If 2 sin^(2) ((pi//2) cos^(2) x)=1-cos (pi sin 2x), x ne (2n + 1) pi//2, n in I , then cos 2x is equal to

The value of int_(0)^(4pi)log_(e)|3sinx+3sqrt(3) cos x|dx then the value of I is equal to

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. If log(sinx)(cos x) = (1)/(2), where x in (0, (pi)/(2)), then the valu...

    Text Solution

    |

  2. The least positive vlaue of the parameter 'a' for which there exist at...

    Text Solution

    |

  3. The locus of the midpoint of a chord of the circle x^2+y^2=4 which sub...

    Text Solution

    |

  4. If f(x)=x + tan x and f si the inverse of g, then g'(x) equals

    Text Solution

    |

  5. Tangents PA and PB are drawn to parabola y^(2)=4x from any arbitrary p...

    Text Solution

    |

  6. If lim(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" ...

    Text Solution

    |

  7. Eccentricity of ellipse 2(x-y+1)^(2)+3(x+y+2)^(2)=5 is

    Text Solution

    |

  8. If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y. Then which ...

    Text Solution

    |

  9. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  10. tan^(-1)(sinx)=sin^(-1)(tanx) holds true for

    Text Solution

    |

  11. The function f(x) = (x^(2) - 1)|x^(2) - 3x + 3|+cos (|x|) is not diffe...

    Text Solution

    |

  12. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  13. If the normals at (x(i),y(i)) i=1,2,3,4 to the rectangular hyperbola x...

    Text Solution

    |

  14. Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le...

    Text Solution

    |

  15. The sum of the roots of the equation tan^(-1)(x+3)-tan^(-1)(x-3)="sin"...

    Text Solution

    |

  16. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  17. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  18. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then

    Text Solution

    |

  19. For the curve y=4x^3-2x^5, find all the points at which the tangents p...

    Text Solution

    |

  20. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  21. If y + b = m(1)(x + a) and y + b = m(2)(x+a) are two tangents to the p...

    Text Solution

    |