Home
Class 12
MATHS
The owner of a milk store finds that, he...

The owner of a milk store finds that, he can sell 980 litres of milk each week at Rs 14/litre and 1220 litres of milk each week at Rs 16 / litre. Assuming a linear relationship between selling price and demand, how many litres could he sell weekly at rs 17/litre

A

`1340`

B

`1530`

C

`1220`

D

`1635`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will use the concept of linear relationships between price and demand. We have two points based on the given data: 1. At Rs 14/litre, the demand is 980 litres. 2. At Rs 16/litre, the demand is 1220 litres. We can represent these points as coordinates: - Point A (14, 980) - Point B (16, 1220) We need to find out how many litres can be sold at Rs 17/litre, which we will denote as point C (17, y). ### Step 1: Set up the linear equation Using the two points, we can find the slope (m) of the line that represents the relationship between price (x) and demand (y). The formula for the slope between two points (x1, y1) and (x2, y2) is: \[ m = \frac{y2 - y1}{x2 - x1} \] Substituting the values: \[ m = \frac{1220 - 980}{16 - 14} = \frac{240}{2} = 120 \] ### Step 2: Use the point-slope form of the equation of a line Now that we have the slope, we can use the point-slope form of the equation of a line, which is: \[ y - y1 = m(x - x1) \] We can use point A (14, 980) for this: \[ y - 980 = 120(x - 14) \] ### Step 3: Simplify the equation Now we will simplify the equation: \[ y - 980 = 120x - 1680 \] Adding 980 to both sides gives: \[ y = 120x - 1680 + 980 \] \[ y = 120x - 700 \] ### Step 4: Find the demand at Rs 17/litre Now we substitute x = 17 into the equation to find y: \[ y = 120(17) - 700 \] Calculating this: \[ y = 2040 - 700 = 1340 \] ### Conclusion Thus, the owner of the milk store could sell **1340 litres** of milk weekly at Rs 17/litre. ---

To solve the problem, we will use the concept of linear relationships between price and demand. We have two points based on the given data: 1. At Rs 14/litre, the demand is 980 litres. 2. At Rs 16/litre, the demand is 1220 litres. We can represent these points as coordinates: - Point A (14, 980) - Point B (16, 1220) ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

A shopkeeper sold 22 litres of milk at the rate of Rs. 18 per litre. Find the amount earned the shopkeeper.

Milk is sold at the rate of Rs 38.50 per litre. How mch will 10 litres of milk cost? How mush will 100 litres of milk cost ?

If milk is available at Rs. 17 3/4 per litre, find the cost of 7 2/5 litres of milk.

Milk is sold at the rate of Rs 42.50 per litre. How much will 12.5 litres of milk cost ?

A vendor supplies 32 litres of milk to a hotel in the morning and 68 litres of milk in the evening. If the milk costs Rs 15 per litre, how much money is due to the vendor per day?

Carrie's Chocolate shop and Tamika's Treat Shop both sell cadny in boxes. The table below lists the price (the total amount the customer pays) of each box of candy sold at the shops. For each shop, there is a linear relationship between the price of a box of candies and the number of candies in the box. These are the only numbers of candies that can be purchased at the shops. Jeremy has $ 10.00 in quarters to spend on candy. What is the maximum number of quarters he would have left after paying for a box 25 candies at Tamika's treat Shop? (Note: Each quarter is worth $ 0.25)

A taxi driver fille dhis car petrol tank with 40 litres of petrol on Monday. The next day he filled the tank with 50 litres of petrol. If the petrol cost Rs. 44 per litre. How much did he spend in all?

In mid-day meal scheme 3/(10) litre of milk is given to each student of a primary school. If 30 litre of milk is distributed every day in the school, how many students are there in the school?

How many litres of milk can a hemispherical bowl of diameter 10.5 cm hold?

The weight of the commodity milk given that Price in base year = Rs. 1.50 Price is current year = Rs. 1.75, Quantity consumed in base year = 10 litres

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. The owner of a milk store finds that, he can sell 980 litres of milk...

    Text Solution

    |

  2. The least positive vlaue of the parameter 'a' for which there exist at...

    Text Solution

    |

  3. The locus of the midpoint of a chord of the circle x^2+y^2=4 which sub...

    Text Solution

    |

  4. If f(x)=x + tan x and f si the inverse of g, then g'(x) equals

    Text Solution

    |

  5. Tangents PA and PB are drawn to parabola y^(2)=4x from any arbitrary p...

    Text Solution

    |

  6. If lim(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" ...

    Text Solution

    |

  7. Eccentricity of ellipse 2(x-y+1)^(2)+3(x+y+2)^(2)=5 is

    Text Solution

    |

  8. If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y. Then which ...

    Text Solution

    |

  9. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  10. tan^(-1)(sinx)=sin^(-1)(tanx) holds true for

    Text Solution

    |

  11. The function f(x) = (x^(2) - 1)|x^(2) - 3x + 3|+cos (|x|) is not diffe...

    Text Solution

    |

  12. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  13. If the normals at (x(i),y(i)) i=1,2,3,4 to the rectangular hyperbola x...

    Text Solution

    |

  14. Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le...

    Text Solution

    |

  15. The sum of the roots of the equation tan^(-1)(x+3)-tan^(-1)(x-3)="sin"...

    Text Solution

    |

  16. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  17. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  18. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then

    Text Solution

    |

  19. For the curve y=4x^3-2x^5, find all the points at which the tangents p...

    Text Solution

    |

  20. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  21. If y + b = m(1)(x + a) and y + b = m(2)(x+a) are two tangents to the p...

    Text Solution

    |