Home
Class 12
MATHS
The value of ((C(1))/(C(0))+2(C(2))/(C...

The value of
`((C_(1))/(C_(0))+2(C_(2))/(C_(1))+3(C_(3))/(C_(2))+"......"+10(C_(10))/(C_(9)))`
(where `C_(r) = .^(10)C_(r)`), is `11lambda`, then value of `lambda` is

A

`1`

B

`2`

C

`4`

D

`5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \frac{C_1}{C_0} + 2 \cdot \frac{C_2}{C_1} + 3 \cdot \frac{C_3}{C_2} + \ldots + 10 \cdot \frac{C_{10}}{C_9} \] where \( C_r = \binom{10}{r} \). ### Step 1: Rewrite the expression using the definition of combinations We know that: \[ C_r = \binom{10}{r} = \frac{10!}{r!(10-r)!} \] Thus, we can express the ratios as follows: \[ \frac{C_r}{C_{r-1}} = \frac{\binom{10}{r}}{\binom{10}{r-1}} = \frac{10!}{r!(10-r)!} \cdot \frac{(r-1)!(10-(r-1))!}{10!} = \frac{10 - (r-1)}{r} = \frac{10 - r + 1}{r} \] ### Step 2: Substitute the ratios back into the expression Now we can rewrite the entire expression: \[ \sum_{r=1}^{10} r \cdot \frac{C_r}{C_{r-1}} = \sum_{r=1}^{10} r \cdot \frac{10 - r + 1}{r} = \sum_{r=1}^{10} (10 - r + 1) \] ### Step 3: Simplify the sum This simplifies to: \[ \sum_{r=1}^{10} (11 - r) \] ### Step 4: Calculate the sum Now we can calculate the sum: \[ \sum_{r=1}^{10} (11 - r) = 11 \cdot 10 - \sum_{r=1}^{10} r = 110 - \frac{10 \cdot 11}{2} = 110 - 55 = 55 \] ### Step 5: Set the sum equal to \( 11\lambda \) According to the problem, this sum equals \( 11\lambda \): \[ 55 = 11\lambda \] ### Step 6: Solve for \( \lambda \) Now we can solve for \( \lambda \): \[ \lambda = \frac{55}{11} = 5 \] Thus, the value of \( \lambda \) is: \[ \boxed{5} \] ---

To solve the problem, we need to evaluate the expression: \[ \frac{C_1}{C_0} + 2 \cdot \frac{C_2}{C_1} + 3 \cdot \frac{C_3}{C_2} + \ldots + 10 \cdot \frac{C_{10}}{C_9} \] where \( C_r = \binom{10}{r} \). ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos
RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. The value of ((C(1))/(C(0))+2(C(2))/(C(1))+3(C(3))/(C(2))+"......"+1...

    Text Solution

    |

  2. The least positive vlaue of the parameter 'a' for which there exist at...

    Text Solution

    |

  3. The locus of the midpoint of a chord of the circle x^2+y^2=4 which sub...

    Text Solution

    |

  4. If f(x)=x + tan x and f si the inverse of g, then g'(x) equals

    Text Solution

    |

  5. Tangents PA and PB are drawn to parabola y^(2)=4x from any arbitrary p...

    Text Solution

    |

  6. If lim(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" ...

    Text Solution

    |

  7. Eccentricity of ellipse 2(x-y+1)^(2)+3(x+y+2)^(2)=5 is

    Text Solution

    |

  8. If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y. Then which ...

    Text Solution

    |

  9. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  10. tan^(-1)(sinx)=sin^(-1)(tanx) holds true for

    Text Solution

    |

  11. The function f(x) = (x^(2) - 1)|x^(2) - 3x + 3|+cos (|x|) is not diffe...

    Text Solution

    |

  12. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  13. If the normals at (x(i),y(i)) i=1,2,3,4 to the rectangular hyperbola x...

    Text Solution

    |

  14. Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le...

    Text Solution

    |

  15. The sum of the roots of the equation tan^(-1)(x+3)-tan^(-1)(x-3)="sin"...

    Text Solution

    |

  16. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  17. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  18. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then

    Text Solution

    |

  19. For the curve y=4x^3-2x^5, find all the points at which the tangents p...

    Text Solution

    |

  20. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  21. If y + b = m(1)(x + a) and y + b = m(2)(x+a) are two tangents to the p...

    Text Solution

    |