Home
Class 12
MATHS
If x^(2) + 9y^(2) = 1, then minimum and...

If `x^(2) + 9y^(2) = 1`, then minimum and maximum value of `3x^(2) - 27y^(2) + 24xy` respectively

A

`0, 5`

B

`-5, 5`

C

`-5, 10`

D

`0, 10`

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum and maximum values of the expression \(3x^2 - 27y^2 + 24xy\) given the constraint \(x^2 + 9y^2 = 1\), we can use a trigonometric substitution. ### Step-by-Step Solution: 1. **Substitution**: Let \(x = \cos \theta\). Then, substituting \(x\) into the constraint: \[ x^2 + 9y^2 = 1 \implies \cos^2 \theta + 9y^2 = 1 \] Rearranging gives: \[ 9y^2 = 1 - \cos^2 \theta \implies 9y^2 = \sin^2 \theta \implies y^2 = \frac{\sin^2 \theta}{9} \implies y = \frac{1}{3} \sin \theta \] 2. **Substituting \(x\) and \(y\) into the expression**: Now substitute \(x\) and \(y\) into the expression \(3x^2 - 27y^2 + 24xy\): \[ 3x^2 = 3\cos^2 \theta \] \[ -27y^2 = -27 \left(\frac{1}{9} \sin^2 \theta\right) = -3\sin^2 \theta \] \[ 24xy = 24\left(\cos \theta \cdot \frac{1}{3} \sin \theta\right) = 8\sin \theta \cos \theta \] Combining these gives: \[ z = 3\cos^2 \theta - 3\sin^2 \theta + 8\sin \theta \cos \theta \] 3. **Using Trigonometric Identities**: Using the identities \(\cos^2 \theta - \sin^2 \theta = \cos 2\theta\) and \(2\sin \theta \cos \theta = \sin 2\theta\): \[ z = 3(\cos^2 \theta - \sin^2 \theta) + 4\sin 2\theta = 3\cos 2\theta + 4\sin 2\theta \] 4. **Finding Maximum and Minimum Values**: The expression \(z = 3\cos 2\theta + 4\sin 2\theta\) can be rewritten in the form \(R\cos(2\theta - \phi)\), where: \[ R = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \] The angle \(\phi\) can be found using: \[ \tan \phi = \frac{4}{3} \] Thus, the maximum value of \(z\) is \(5\) and the minimum value is \(-5\). 5. **Final Values**: Therefore, the minimum value of \(z\) is \(-5\) and the maximum value is \(5\). ### Conclusion: The minimum value of \(3x^2 - 27y^2 + 24xy\) is \(-5\) and the maximum value is \(5\).

To find the minimum and maximum values of the expression \(3x^2 - 27y^2 + 24xy\) given the constraint \(x^2 + 9y^2 = 1\), we can use a trigonometric substitution. ### Step-by-Step Solution: 1. **Substitution**: Let \(x = \cos \theta\). Then, substituting \(x\) into the constraint: \[ x^2 + 9y^2 = 1 \implies \cos^2 \theta + 9y^2 = 1 ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

If xy=1 , then minimum value of x ^(2) + y^(2) is :

Find the minimum and maximum values of y in 4x^2 + 12xy + 10y^2-4y + 3 = 0

If x+y=1 then find the maximum value of the function xy^2

If y ^(2)(y^(2) -6) + x ^(2) -8x +24 =0 and the minimum value of x ^(2) + y^(4) is m and maximum value is M, then find the value of M-2m.

If 'x' be real, find the maximum and minimum value of : y=(x+2)/(2x^(2)+3x+6)

If x ,y in R and x^2+y^2+x y=1, then find the minimum value of x^3y+x y^3+4.

if y^(2)(y^(2)-6)+x^(2)-8x+24=0 , then maximum value of sqrt(y^(4)+x^(2)) is

If 2x- 3y= 10 and xy= 16 , find the value of 8x^(3)- 27y^(3)

If (x,y) lies on the ellipse x^(2)+2y^(3) = 2 , then maximum value of x^(2)+y^(2)+ sqrt(2)xy - 1 is

If x,y in R and satisfy the equation xy(x^(2)-y^(2))=x^(2)+y^(2) where xne0 then the minimum possible value of x^(2)+y^(2) is

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. If x^(2) + 9y^(2) = 1, then minimum and maximum value of 3x^(2) - 27y...

    Text Solution

    |

  2. The least positive vlaue of the parameter 'a' for which there exist at...

    Text Solution

    |

  3. The locus of the midpoint of a chord of the circle x^2+y^2=4 which sub...

    Text Solution

    |

  4. If f(x)=x + tan x and f si the inverse of g, then g'(x) equals

    Text Solution

    |

  5. Tangents PA and PB are drawn to parabola y^(2)=4x from any arbitrary p...

    Text Solution

    |

  6. If lim(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" ...

    Text Solution

    |

  7. Eccentricity of ellipse 2(x-y+1)^(2)+3(x+y+2)^(2)=5 is

    Text Solution

    |

  8. If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y. Then which ...

    Text Solution

    |

  9. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  10. tan^(-1)(sinx)=sin^(-1)(tanx) holds true for

    Text Solution

    |

  11. The function f(x) = (x^(2) - 1)|x^(2) - 3x + 3|+cos (|x|) is not diffe...

    Text Solution

    |

  12. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  13. If the normals at (x(i),y(i)) i=1,2,3,4 to the rectangular hyperbola x...

    Text Solution

    |

  14. Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le...

    Text Solution

    |

  15. The sum of the roots of the equation tan^(-1)(x+3)-tan^(-1)(x-3)="sin"...

    Text Solution

    |

  16. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  17. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  18. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then

    Text Solution

    |

  19. For the curve y=4x^3-2x^5, find all the points at which the tangents p...

    Text Solution

    |

  20. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  21. If y + b = m(1)(x + a) and y + b = m(2)(x+a) are two tangents to the p...

    Text Solution

    |