Home
Class 11
PHYSICS
The value int(0)^(pi//2) sin^(2)xdx will...

The value `int_(0)^(pi//2) sin^(2)xdx` will be `:`

A

1

B

0

C

`(pi)/(4)`

D

`(pi)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{\frac{\pi}{2}} \sin^2 x \, dx \), we can follow these steps: ### Step 1: Use the identity for \( \sin^2 x \) We can use the trigonometric identity: \[ \sin^2 x = \frac{1 - \cos(2x)}{2} \] This allows us to rewrite the integral: \[ \int_{0}^{\frac{\pi}{2}} \sin^2 x \, dx = \int_{0}^{\frac{\pi}{2}} \frac{1 - \cos(2x)}{2} \, dx \] ### Step 2: Separate the integral Now, we can separate the integral into two parts: \[ \int_{0}^{\frac{\pi}{2}} \sin^2 x \, dx = \frac{1}{2} \int_{0}^{\frac{\pi}{2}} 1 \, dx - \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \cos(2x) \, dx \] ### Step 3: Evaluate the first integral The first integral \( \int_{0}^{\frac{\pi}{2}} 1 \, dx \) is straightforward: \[ \int_{0}^{\frac{\pi}{2}} 1 \, dx = \left[ x \right]_{0}^{\frac{\pi}{2}} = \frac{\pi}{2} - 0 = \frac{\pi}{2} \] ### Step 4: Evaluate the second integral Now, we evaluate the second integral \( \int_{0}^{\frac{\pi}{2}} \cos(2x) \, dx \): \[ \int \cos(2x) \, dx = \frac{\sin(2x)}{2} \] Thus, \[ \int_{0}^{\frac{\pi}{2}} \cos(2x) \, dx = \left[ \frac{\sin(2x)}{2} \right]_{0}^{\frac{\pi}{2}} = \frac{\sin(\pi)}{2} - \frac{\sin(0)}{2} = \frac{0}{2} - \frac{0}{2} = 0 \] ### Step 5: Combine the results Now we can combine the results: \[ \int_{0}^{\frac{\pi}{2}} \sin^2 x \, dx = \frac{1}{2} \left( \frac{\pi}{2} \right) - \frac{1}{2} (0) = \frac{\pi}{4} \] ### Final Answer Thus, the value of the integral \( \int_{0}^{\frac{\pi}{2}} \sin^2 x \, dx \) is: \[ \frac{\pi}{4} \]

To solve the integral \( \int_{0}^{\frac{\pi}{2}} \sin^2 x \, dx \), we can follow these steps: ### Step 1: Use the identity for \( \sin^2 x \) We can use the trigonometric identity: \[ \sin^2 x = \frac{1 - \cos(2x)}{2} \] This allows us to rewrite the integral: ...
Promotional Banner

Topper's Solved these Questions

  • DAILY PRACTICE PROBLEMS

    RESONANCE ENGLISH|Exercise DPP 8 PHYSICS|7 Videos
  • DAILY PRACTICE PROBLEMS

    RESONANCE ENGLISH|Exercise DPP no 9 physics|10 Videos
  • DAILY PRACTICE PROBLEMS

    RESONANCE ENGLISH|Exercise Dpp no 6 physics|10 Videos
  • CURRENT ELECTRICITY

    RESONANCE ENGLISH|Exercise Exercise|53 Videos
  • ELASTICITY AND VISCOCITY

    RESONANCE ENGLISH|Exercise Advanced Level Problems|9 Videos

Similar Questions

Explore conceptually related problems

int_(0)^( pi)x sin^(-1)xdx

Evaluate int_(0)^(pi//2)lnsin2xdx

int_(0)^( pi/2)x sec^(2)xdx

int_(0)^( pi/2)sec^(2)xdx

Evaluate : int_(0)^(pi//2)sin^(8)xdx

Evaluate int_(0)^(pi//2)cos^(4)xdx

int_(0)^( pi/4)sec^(2)xdx

int_(0)^(pi/2)cos^2x sin^2xdx

int_0^(pi/2) sin^2xcos^2xdx

Evaluate : int_(0)^(pi//2)cos^(9)xdx