Home
Class 12
MATHS
f(x)=min({x,x^(2)} and g(x)=max{x,x^(2)}...

`f(x)=min({x,x^(2)}` and `g(x)=max{x,x^(2)}`

A

`int_(-1)^(1)f(x)=-(1)/(6)`

B

`int_(-2)^(1)g(x)=(19)/(6)`

C

`int_(-1)^(1)f(x)=(19)/(6)`

D

`int_(-1)^(1)g(x)=-(1)/(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the functions \( f(x) = \min(x, x^2) \) and \( g(x) = \max(x, x^2) \). We will find the values of these functions over specific intervals. ### Step 1: Analyze \( f(x) = \min(x, x^2) \) 1. **Identify the points where \( x = x^2 \)**: \[ x = x^2 \implies x^2 - x = 0 \implies x(x - 1) = 0 \] This gives us the points \( x = 0 \) and \( x = 1 \). 2. **Determine the intervals**: We will analyze the function on the intervals \( (-\infty, 0) \), \( [0, 1] \), and \( (1, \infty) \). 3. **Evaluate \( f(x) \) in each interval**: - For \( x < 0 \): \( x^2 > x \) (since \( x^2 \) is positive and \( x \) is negative), thus \( f(x) = x^2 \). - For \( 0 \leq x \leq 1 \): \( x^2 \leq x \), thus \( f(x) = x^2 \). - For \( x > 1 \): \( x^2 > x \), thus \( f(x) = x \). ### Step 2: Set up the integral for \( f(x) \) We need to find the integral of \( f(x) \) over the intervals: - From \( -1 \) to \( 0 \): \( f(x) = x^2 \) - From \( 0 \) to \( 1 \): \( f(x) = x^2 \) The integral can be expressed as: \[ \int_{-1}^{0} x^2 \, dx + \int_{0}^{1} x^2 \, dx \] ### Step 3: Calculate the integrals 1. **Calculate \( \int x^2 \, dx \)**: \[ \int x^2 \, dx = \frac{x^3}{3} + C \] 2. **Evaluate the first integral**: \[ \int_{-1}^{0} x^2 \, dx = \left[ \frac{x^3}{3} \right]_{-1}^{0} = \left(0 - \left(-\frac{1}{3}\right)\right) = \frac{1}{3} \] 3. **Evaluate the second integral**: \[ \int_{0}^{1} x^2 \, dx = \left[ \frac{x^3}{3} \right]_{0}^{1} = \left(\frac{1}{3} - 0\right) = \frac{1}{3} \] ### Step 4: Combine the results for \( f(x) \) Adding both integrals: \[ \int_{-1}^{0} f(x) \, dx + \int_{0}^{1} f(x) \, dx = \frac{1}{3} + \frac{1}{3} = \frac{2}{3} \] ### Step 5: Analyze \( g(x) = \max(x, x^2) \) 1. **Evaluate \( g(x) \) in each interval**: - For \( x < 0 \): \( g(x) = x \) (since \( x \) is greater than \( x^2 \)). - For \( 0 \leq x \leq 1 \): \( g(x) = x \). - For \( x > 1 \): \( g(x) = x^2 \). ### Step 6: Set up the integral for \( g(x) \) We need to find the integral of \( g(x) \) over the intervals: - From \( -1 \) to \( 0 \): \( g(x) = x \) - From \( 0 \) to \( 1 \): \( g(x) = x \) - From \( 1 \) to \( 2 \): \( g(x) = x^2 \) The integral can be expressed as: \[ \int_{-1}^{0} x \, dx + \int_{0}^{1} x \, dx + \int_{1}^{2} x^2 \, dx \] ### Step 7: Calculate the integrals for \( g(x) \) 1. **Calculate \( \int x \, dx \)**: \[ \int x \, dx = \frac{x^2}{2} + C \] 2. **Evaluate the first integral**: \[ \int_{-1}^{0} x \, dx = \left[ \frac{x^2}{2} \right]_{-1}^{0} = \left(0 - \frac{1}{2}\right) = -\frac{1}{2} \] 3. **Evaluate the second integral**: \[ \int_{0}^{1} x \, dx = \left[ \frac{x^2}{2} \right]_{0}^{1} = \left(\frac{1}{2} - 0\right) = \frac{1}{2} \] 4. **Evaluate the third integral**: \[ \int_{1}^{2} x^2 \, dx = \left[ \frac{x^3}{3} \right]_{1}^{2} = \left(\frac{8}{3} - \frac{1}{3}\right) = \frac{7}{3} \] ### Step 8: Combine the results for \( g(x) \) Adding all integrals: \[ \int_{-1}^{0} g(x) \, dx + \int_{0}^{1} g(x) \, dx + \int_{1}^{2} g(x) \, dx = -\frac{1}{2} + \frac{1}{2} + \frac{7}{3} = \frac{7}{3} \] ### Final Results - The value of \( f(x) \) is \( \frac{2}{3} \). - The value of \( g(x) \) is \( \frac{7}{3} \).

To solve the problem, we need to analyze the functions \( f(x) = \min(x, x^2) \) and \( g(x) = \max(x, x^2) \). We will find the values of these functions over specific intervals. ### Step 1: Analyze \( f(x) = \min(x, x^2) \) 1. **Identify the points where \( x = x^2 \)**: \[ x = x^2 \implies x^2 - x = 0 \implies x(x - 1) = 0 \] ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

Suppose that the function f(x) and g(x) satisfy the system of equations f(x)+3g(x)=x^(2)+x+6 and 2f(x)+4g(x)=2x^(2)+4 for every x. The value of x for which f(x)=g(x) can be equal to

If f(x)=|x-2|+x^(2)-1 and g(x)+f(x)=x^(2)+3 , find the maximum value of g(x) .

Let f and g be continuous function on alexleb and set p(x)=max{f(x),g(x)} and q(x)="min"{f(x),g(x) }. Then the area bounded by the curves y=p(x),y=q(x) and the ordinates x=a and x=b is given by

Let f (x) = x^3-x^2-x+1 and g(x) = {max{f(t); 0<=t<=x}, 0<=x<=1, 3-x, 1<=x<=2 Discuss the continuity and differentiability of the function g (x) in the interval (0, 2).

If f(x)=min(1,x^2,x^3), then

If f(x) = x^(2) and g(x) = (1)/(x^(3)) . Then the value of (f(x)+g(x))/(f(-x)-g(-x)) at x = 2 is

Let f(x)=x^2+xg^2(1)+g^''(2) and g(x)=f(1).x^2+xf'(x)+f''(x), then find f(x) and g(x).

Let f(x) = x^(2) + 2x +5 and g(x) = x^(3) - 1 be two real functions. Find (f+g)(x), (f-g)(x), (fg)(x) and ((f)/(g))(x) .

If f(g(x))=4x^(2)-8x and f(x)=x^(2)-4, then g(x)=

f(x)=x^(2)+xg'(1)+g''(2)and g(x)=f(1)x^(2)+xf'(x)+f'(x). The domain of the function sqrt((f(x))/(g(x))) is

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. f(x)=min({x,x^(2)} and g(x)=max{x,x^(2)}

    Text Solution

    |

  2. The least positive vlaue of the parameter 'a' for which there exist at...

    Text Solution

    |

  3. The locus of the midpoint of a chord of the circle x^2+y^2=4 which sub...

    Text Solution

    |

  4. If f(x)=x + tan x and f si the inverse of g, then g'(x) equals

    Text Solution

    |

  5. Tangents PA and PB are drawn to parabola y^(2)=4x from any arbitrary p...

    Text Solution

    |

  6. If lim(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" ...

    Text Solution

    |

  7. Eccentricity of ellipse 2(x-y+1)^(2)+3(x+y+2)^(2)=5 is

    Text Solution

    |

  8. If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y. Then which ...

    Text Solution

    |

  9. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  10. tan^(-1)(sinx)=sin^(-1)(tanx) holds true for

    Text Solution

    |

  11. The function f(x) = (x^(2) - 1)|x^(2) - 3x + 3|+cos (|x|) is not diffe...

    Text Solution

    |

  12. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  13. If the normals at (x(i),y(i)) i=1,2,3,4 to the rectangular hyperbola x...

    Text Solution

    |

  14. Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le...

    Text Solution

    |

  15. The sum of the roots of the equation tan^(-1)(x+3)-tan^(-1)(x-3)="sin"...

    Text Solution

    |

  16. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  17. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  18. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then

    Text Solution

    |

  19. For the curve y=4x^3-2x^5, find all the points at which the tangents p...

    Text Solution

    |

  20. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  21. If y + b = m(1)(x + a) and y + b = m(2)(x+a) are two tangents to the p...

    Text Solution

    |