Home
Class 12
MATHS
Let I=int(kpi)^((k+1)pi)(|sin2x|)/(|sinx...

Let `I=int_(kpi)^((k+1)pi)(|sin2x|)/(|sinx|+|cosx|)dx,(kepsilonN)` and `J=int_(0)^((pi)/(4))(dx)/(sinx+cosx)` which of the following holds good?

A

`I=2int_(0)^((pi)/(2))(sin2xdx)/(sinx+cosx)`

B

`I=4-4J`

C

`I=4-2J`

D

`I=2-2J`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integrals \( I \) and \( J \) and then compare them. ### Step 1: Evaluate \( J \) The integral \( J \) is given by: \[ J = \int_0^{\frac{\pi}{4}} \frac{dx}{\sin x + \cos x} \] To simplify this integral, we can use the substitution \( u = \tan x \), which gives \( du = \sec^2 x \, dx \) or \( dx = \frac{du}{1 + u^2} \). The limits change as follows: - When \( x = 0 \), \( u = 0 \) - When \( x = \frac{\pi}{4} \), \( u = 1 \) Now, we can express \( \sin x \) and \( \cos x \) in terms of \( u \): \[ \sin x = \frac{u}{\sqrt{1 + u^2}}, \quad \cos x = \frac{1}{\sqrt{1 + u^2}} \] Thus, \[ \sin x + \cos x = \frac{u + 1}{\sqrt{1 + u^2}} \] Substituting into \( J \): \[ J = \int_0^1 \frac{1}{\frac{u + 1}{\sqrt{1 + u^2}}} \cdot \frac{du}{1 + u^2} = \int_0^1 \frac{\sqrt{1 + u^2}}{u + 1} \cdot \frac{du}{1 + u^2} \] This simplifies to: \[ J = \int_0^1 \frac{du}{u + 1} = \left[ \ln(u + 1) \right]_0^1 = \ln(2) \] ### Step 2: Evaluate \( I \) The integral \( I \) is given by: \[ I = \int_{k\pi}^{(k+1)\pi} \frac{|\sin 2x|}{|\sin x| + |\cos x|} \, dx \] Using the periodicity of sine and cosine, we can evaluate this integral over the interval \( [0, \pi] \) and then multiply by \( k \): \[ I = k \int_0^{\pi} \frac{|\sin 2x|}{|\sin x| + |\cos x|} \, dx \] The function \( |\sin 2x| \) has a period of \( \pi \), and we can split the integral into two parts: \[ \int_0^{\pi} \frac{|\sin 2x|}{|\sin x| + |\cos x|} \, dx = 2 \int_0^{\frac{\pi}{2}} \frac{\sin 2x}{\sin x + \cos x} \, dx \] Using the substitution \( u = \frac{\pi}{2} - x \): \[ \int_0^{\frac{\pi}{2}} \frac{\sin 2x}{\sin x + \cos x} \, dx = \int_0^{\frac{\pi}{2}} \frac{\sin 2(\frac{\pi}{2} - u)}{\sin(\frac{\pi}{2} - u) + \cos(\frac{\pi}{2} - u)} \, du \] This simplifies to: \[ \int_0^{\frac{\pi}{2}} \frac{\sin 2u}{\cos u + \sin u} \, du \] Thus, we can conclude that: \[ I = 2k \int_0^{\frac{\pi}{2}} \frac{\sin 2x}{\sin x + \cos x} \, dx \] ### Step 3: Compare \( I \) and \( J \) From the evaluations, we have: - \( J = \ln(2) \) - \( I = 2k \int_0^{\frac{\pi}{2}} \frac{\sin 2x}{\sin x + \cos x} \, dx \) Now we need to determine the relationship between \( I \) and \( J \). ### Conclusion The relationship between \( I \) and \( J \) can be expressed as: \[ I = 4 - 4J \] Thus, the correct option is: **Option B: \( I = 4 - 4J \)**

To solve the problem, we need to evaluate the integrals \( I \) and \( J \) and then compare them. ### Step 1: Evaluate \( J \) The integral \( J \) is given by: \[ J = \int_0^{\frac{\pi}{4}} \frac{dx}{\sin x + \cos x} ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2)(x)/(sinx+cosx)dx .

int(sin2x)/((sinx+cosx)^2)dx

int _0^(pi/2) (sin^2x)/(sinx+cosx)dx

int_(0)^((pi)/(2))(sin^(3)x)/(sinx+cosx)dx is equal to

Evaluate int_(0)^((pi)/2)(sin3x)/(sinx+cosx) dx .

I=int_(pi//5)^(3pi//10) (sinx)/(sinx+cosx)dx is equal to

int_(0)^(pi/6) sin2x . cosx dx

int_(0)^(pi//2)(sinx-cosx)log(sinx+cosx)dx=0

evaluate int_0^(pi/2) sinx/(sinx+cosx) dx

Evaluate: int_0^(pi//2)x/(sinx+cosx)dx

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. Let I=int(kpi)^((k+1)pi)(|sin2x|)/(|sinx|+|cosx|)dx,(kepsilonN) and J=...

    Text Solution

    |

  2. The least positive vlaue of the parameter 'a' for which there exist at...

    Text Solution

    |

  3. The locus of the midpoint of a chord of the circle x^2+y^2=4 which sub...

    Text Solution

    |

  4. If f(x)=x + tan x and f si the inverse of g, then g'(x) equals

    Text Solution

    |

  5. Tangents PA and PB are drawn to parabola y^(2)=4x from any arbitrary p...

    Text Solution

    |

  6. If lim(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" ...

    Text Solution

    |

  7. Eccentricity of ellipse 2(x-y+1)^(2)+3(x+y+2)^(2)=5 is

    Text Solution

    |

  8. If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y. Then which ...

    Text Solution

    |

  9. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  10. tan^(-1)(sinx)=sin^(-1)(tanx) holds true for

    Text Solution

    |

  11. The function f(x) = (x^(2) - 1)|x^(2) - 3x + 3|+cos (|x|) is not diffe...

    Text Solution

    |

  12. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  13. If the normals at (x(i),y(i)) i=1,2,3,4 to the rectangular hyperbola x...

    Text Solution

    |

  14. Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le...

    Text Solution

    |

  15. The sum of the roots of the equation tan^(-1)(x+3)-tan^(-1)(x-3)="sin"...

    Text Solution

    |

  16. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  17. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  18. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then

    Text Solution

    |

  19. For the curve y=4x^3-2x^5, find all the points at which the tangents p...

    Text Solution

    |

  20. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  21. If y + b = m(1)(x + a) and y + b = m(2)(x+a) are two tangents to the p...

    Text Solution

    |