Home
Class 12
MATHS
If axx(bxxc) is perpendicular to (axxb)x...

If `axx(bxxc)` is perpendicular to `(axxb)xxc`, we may have

A

`(veca.vecc)|vecb|^(2)=(veca.vecb)(vecb.vecc)`

B

`veca.vecb=0`

C

`veca.vecc=0`

D

`vecb.vecc=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the condition given: \( \mathbf{a} \times (\mathbf{b} \times \mathbf{c}) \) is perpendicular to \( (\mathbf{a} \times \mathbf{b}) \times \mathbf{c} \). This implies that the dot product of these two vectors is zero. ### Step-by-Step Solution 1. **Understand the Cross Product**: The cross product of two vectors \( \mathbf{u} \) and \( \mathbf{v} \) gives a vector that is perpendicular to both \( \mathbf{u} \) and \( \mathbf{v} \). We will use the vector triple product identity: \[ \mathbf{u} \times (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \cdot \mathbf{w}) \mathbf{v} - (\mathbf{u} \cdot \mathbf{v}) \mathbf{w} \] 2. **Apply the Triple Product Identity**: For \( \mathbf{a} \times (\mathbf{b} \times \mathbf{c}) \): \[ \mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c}) \mathbf{b} - (\mathbf{a} \cdot \mathbf{b}) \mathbf{c} \] For \( (\mathbf{a} \times \mathbf{b}) \times \mathbf{c} \): \[ (\mathbf{a} \times \mathbf{b}) \times \mathbf{c} = (\mathbf{c} \cdot \mathbf{b}) \mathbf{a} - (\mathbf{c} \cdot \mathbf{a}) \mathbf{b} \] 3. **Set Up the Dot Product**: Since the two vectors are perpendicular, we can set up the equation: \[ \left[ (\mathbf{a} \cdot \mathbf{c}) \mathbf{b} - (\mathbf{a} \cdot \mathbf{b}) \mathbf{c} \right] \cdot \left[ (\mathbf{c} \cdot \mathbf{b}) \mathbf{a} - (\mathbf{c} \cdot \mathbf{a}) \mathbf{b} \right] = 0 \] 4. **Expand the Dot Product**: Expanding the dot product gives: \[ (\mathbf{a} \cdot \mathbf{c})(\mathbf{c} \cdot \mathbf{b}) (\mathbf{b} \cdot \mathbf{a}) - (\mathbf{a} \cdot \mathbf{c})(\mathbf{c} \cdot \mathbf{a}) (\mathbf{b} \cdot \mathbf{b}) - (\mathbf{a} \cdot \mathbf{b})(\mathbf{c} \cdot \mathbf{b}) (\mathbf{b} \cdot \mathbf{c}) + (\mathbf{a} \cdot \mathbf{b})(\mathbf{c} \cdot \mathbf{a}) (\mathbf{b} \cdot \mathbf{b}) = 0 \] 5. **Rearranging Terms**: Rearranging and simplifying the equation will lead us to conditions on the vectors \( \mathbf{a}, \mathbf{b}, \) and \( \mathbf{c} \). 6. **Conclusion**: After simplification, we can conclude that one of the conditions for the vectors to satisfy the perpendicularity condition is: - \( \mathbf{a} \cdot \mathbf{c} = 0 \) or \( \mathbf{b} \cdot \mathbf{c} = 0 \) ### Final Result Thus, the conditions that satisfy the given problem are: - \( \mathbf{a} \cdot \mathbf{c} = 0 \) (indicating \( \mathbf{a} \) is perpendicular to \( \mathbf{c} \)) - \( \mathbf{b} \cdot \mathbf{c} = 0 \) (indicating \( \mathbf{b} \) is perpendicular to \( \mathbf{c} \))

To solve the problem, we need to analyze the condition given: \( \mathbf{a} \times (\mathbf{b} \times \mathbf{c}) \) is perpendicular to \( (\mathbf{a} \times \mathbf{b}) \times \mathbf{c} \). This implies that the dot product of these two vectors is zero. ### Step-by-Step Solution 1. **Understand the Cross Product**: The cross product of two vectors \( \mathbf{u} \) and \( \mathbf{v} \) gives a vector that is perpendicular to both \( \mathbf{u} \) and \( \mathbf{v} \). We will use the vector triple product identity: \[ \mathbf{u} \times (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \cdot \mathbf{w}) \mathbf{v} - (\mathbf{u} \cdot \mathbf{v}) \mathbf{w} ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

If veca xx (vec b xx vecc) is perpendicular to (veca xx vecb ) xx vecc , we may have

If vec axx( vec bxx vec c) is perpendicular to ( vec axx vec b)xx vec c , we may have a. ( vec a. vec c)| vec b|^2=( vec a. vec b)( vec b.vec c)( vec c.vec a) b. vec adot vec b=0 c. vec adot vec c=0 d. vec bdot vec c=0

Then A may have :

An object may have

An object may have

Statement I: If a is perpendicular to b and c, then axx(bxxc)=0 Statement II: if a is perpendicular to b and c, then bxxc=0

A vector perpendicular to (4hati-3hatj) may be :

A vector perpendicular to (4hati-3hatj) may be :

If vec b is not perpendicular to vec c , then find the vector vec r satisfying the equyation vec rxx vec b= vec axx vec b and vec r. vec c=0.

Statement-I The number of vectors of unit length and perpendicular to both the vectors hat(i)+hat(j) and hat(j)+hat(k) is zero. Statement-II a and b are two non-zero and non-parallel vectors it is true that axxb is perpendicular to the plane containing a and b

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. If axx(bxxc) is perpendicular to (axxb)xxc, we may have

    Text Solution

    |

  2. The least positive vlaue of the parameter 'a' for which there exist at...

    Text Solution

    |

  3. The locus of the midpoint of a chord of the circle x^2+y^2=4 which sub...

    Text Solution

    |

  4. If f(x)=x + tan x and f si the inverse of g, then g'(x) equals

    Text Solution

    |

  5. Tangents PA and PB are drawn to parabola y^(2)=4x from any arbitrary p...

    Text Solution

    |

  6. If lim(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" ...

    Text Solution

    |

  7. Eccentricity of ellipse 2(x-y+1)^(2)+3(x+y+2)^(2)=5 is

    Text Solution

    |

  8. If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y. Then which ...

    Text Solution

    |

  9. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  10. tan^(-1)(sinx)=sin^(-1)(tanx) holds true for

    Text Solution

    |

  11. The function f(x) = (x^(2) - 1)|x^(2) - 3x + 3|+cos (|x|) is not diffe...

    Text Solution

    |

  12. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  13. If the normals at (x(i),y(i)) i=1,2,3,4 to the rectangular hyperbola x...

    Text Solution

    |

  14. Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le...

    Text Solution

    |

  15. The sum of the roots of the equation tan^(-1)(x+3)-tan^(-1)(x-3)="sin"...

    Text Solution

    |

  16. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  17. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  18. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then

    Text Solution

    |

  19. For the curve y=4x^3-2x^5, find all the points at which the tangents p...

    Text Solution

    |

  20. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  21. If y + b = m(1)(x + a) and y + b = m(2)(x+a) are two tangents to the p...

    Text Solution

    |