Home
Class 12
MATHS
For a real number x let [x] denote the l...

For a real number x let `[x]` denote the largest integer less than or equal to x and `{x}=x-[x]`. The possible integer value of n for which `int_(1)^(n)[x]{x}dx` exceeds 2013 is

A

63

B

64

C

90

D

91

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \[ I(n) = \int_{1}^{n} [x] \{x\} \, dx \] where \([x]\) is the greatest integer less than or equal to \(x\) and \(\{x\} = x - [x]\). ### Step-by-Step Solution: 1. **Understanding the Integral**: The function \([x]\) is piecewise constant, and \(\{x\}\) is a linear function. For \(x\) in the interval \([k, k+1)\) where \(k\) is an integer, we have: \[ [x] = k \quad \text{and} \quad \{x\} = x - k \] Therefore, the integral can be split into intervals: \[ I(n) = \sum_{k=1}^{n-1} \int_{k}^{k+1} k (x - k) \, dx \] 2. **Calculating the Integral for Each Interval**: For each \(k\), we compute: \[ \int_{k}^{k+1} k (x - k) \, dx = k \int_{k}^{k+1} (x - k) \, dx \] Let \(u = x - k\), then when \(x = k\), \(u = 0\) and when \(x = k+1\), \(u = 1\). Thus: \[ \int_{k}^{k+1} (x - k) \, dx = \int_{0}^{1} u \, du = \left[ \frac{u^2}{2} \right]_{0}^{1} = \frac{1}{2} \] Therefore: \[ \int_{k}^{k+1} k (x - k) \, dx = k \cdot \frac{1}{2} = \frac{k}{2} \] 3. **Summing Over All Intervals**: Now we sum this from \(k=1\) to \(n-1\): \[ I(n) = \sum_{k=1}^{n-1} \frac{k}{2} = \frac{1}{2} \sum_{k=1}^{n-1} k = \frac{1}{2} \cdot \frac{(n-1)n}{2} = \frac{(n-1)n}{4} \] 4. **Setting Up the Inequality**: We need to find \(n\) such that: \[ I(n) > 2013 \implies \frac{(n-1)n}{4} > 2013 \implies (n-1)n > 8052 \] 5. **Finding Integer Solutions**: To solve \((n-1)n > 8052\), we can approximate \(n^2 - n - 8052 > 0\). Using the quadratic formula: \[ n = \frac{1 \pm \sqrt{1 + 4 \cdot 8052}}{2} = \frac{1 \pm \sqrt{32209}}{2} \] Calculating \(\sqrt{32209} \approx 179.4\), we find: \[ n \approx \frac{1 + 179.4}{2} \approx 90.2 \] Thus, we check integer values \(n = 90\) and \(n = 91\). 6. **Checking Values**: - For \(n = 90\): \[ I(90) = \frac{89 \cdot 90}{4} = \frac{8010}{4} = 2002.5 \quad (\text{not exceeding } 2013) \] - For \(n = 91\): \[ I(91) = \frac{90 \cdot 91}{4} = \frac{8190}{4} = 2047.5 \quad (\text{exceeds } 2013) \] ### Conclusion: The possible integer value of \(n\) for which the integral exceeds 2013 is: \[ \boxed{91} \]

To solve the problem, we need to evaluate the integral \[ I(n) = \int_{1}^{n} [x] \{x\} \, dx \] where \([x]\) is the greatest integer less than or equal to \(x\) and \(\{x\} = x - [x]\). ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

For a real number x let [x] denote the largest integer less than or equal to x and {x}=x-[x] Let n be a positive integer. Then int_0^n cos(2pi)[x]{x})dx is equal to

Let [x] denotes the greatest integer less than or equal to x and f(x)=[tan^(2)x] . Then

Let [x] denote the greatest integer less than or equal to x . Then, int_(0)^(1.5)[x]dx=?

Let [x] denotes the greatest integer less than or equal to x. If f(x) =[x sin pi x] , then f(x) is

Let f(x)=[x]+[-x] , where [x] denotes the greastest integer less than or equal to x . Then, for any integer m

For any real number x , [x] denotes the largest integer less than or equal to and {x}=x-[x] The number of real solutions of 7[x]+23{x}=191 is (A) 0 (B) 1 (c) 2 (D) 3

For a real number x, let [x] denote the greatest integer less than or equal to x. Let f: R -> R be defined as f(x)= 2x + [x]+ sin x cos x then f is

Solve the equation x^(3)-[x]=3 , where [x] denotes the greatest integer less than or equal to x .

If [x] denotes the greatest integer less than or equal to x , then find the value of the integral int_0^2x^2[x]dxdot

If [x] denotes the greatest integer less than or equal to x , then find the value of the integral int_0^2x^2[x]dxdot

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. For a real number x let [x] denote the largest integer less than or eq...

    Text Solution

    |

  2. The least positive vlaue of the parameter 'a' for which there exist at...

    Text Solution

    |

  3. The locus of the midpoint of a chord of the circle x^2+y^2=4 which sub...

    Text Solution

    |

  4. If f(x)=x + tan x and f si the inverse of g, then g'(x) equals

    Text Solution

    |

  5. Tangents PA and PB are drawn to parabola y^(2)=4x from any arbitrary p...

    Text Solution

    |

  6. If lim(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" ...

    Text Solution

    |

  7. Eccentricity of ellipse 2(x-y+1)^(2)+3(x+y+2)^(2)=5 is

    Text Solution

    |

  8. If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y. Then which ...

    Text Solution

    |

  9. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  10. tan^(-1)(sinx)=sin^(-1)(tanx) holds true for

    Text Solution

    |

  11. The function f(x) = (x^(2) - 1)|x^(2) - 3x + 3|+cos (|x|) is not diffe...

    Text Solution

    |

  12. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  13. If the normals at (x(i),y(i)) i=1,2,3,4 to the rectangular hyperbola x...

    Text Solution

    |

  14. Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le...

    Text Solution

    |

  15. The sum of the roots of the equation tan^(-1)(x+3)-tan^(-1)(x-3)="sin"...

    Text Solution

    |

  16. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  17. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  18. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then

    Text Solution

    |

  19. For the curve y=4x^3-2x^5, find all the points at which the tangents p...

    Text Solution

    |

  20. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  21. If y + b = m(1)(x + a) and y + b = m(2)(x+a) are two tangents to the p...

    Text Solution

    |