Home
Class 12
MATHS
Consider f(x)=int(-1)^(x)(e^((x-t)/(x-2-...

Consider `f(x)=int_(-1)^(x)(e^((x-t)/(x-2-t))dt)/(x-2-t)^(2)`
Q. The greatest integer in range of `f(x)` is

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we will analyze the function \( f(x) \) defined as: \[ f(x) = \int_{-1}^{x} \frac{e^{\frac{x-t}{x-2-t}}}{(x-2-t)^2} dt \] We want to find the greatest integer in the range of \( f(x) \). ### Step 1: Change of Variables Let's perform a change of variables to simplify the integral. We set: \[ u = x - 2 - t \implies t = x - 2 - u \] Then, the differential \( dt \) becomes: \[ dt = -du \] ### Step 2: Determine the New Limits of Integration When \( t = -1 \): \[ u = x - 2 + 1 = x - 1 \] When \( t = x \): \[ u = x - 2 - x = -2 \] Thus, the limits of integration change from \( t: -1 \to x \) to \( u: x-1 \to -2 \). ### Step 3: Substitute in the Integral Now we substitute \( t \) and \( dt \) into the integral: \[ f(x) = \int_{x-1}^{-2} \frac{e^{\frac{x - (x - 2 - u)}{u}}}{u^2} (-du) = \int_{-2}^{x-1} \frac{e^{\frac{2 + u}{u}}}{u^2} du \] ### Step 4: Evaluate the Integral The integral can be evaluated as follows: \[ f(x) = \int_{-2}^{x-1} \frac{e^{\frac{2 + u}{u}}}{u^2} du \] However, we need to analyze the behavior of \( f(x) \) as \( x \) varies. ### Step 5: Analyze the Function To find the range of \( f(x) \), we will analyze the limits as \( x \) approaches certain values: 1. As \( x \to -1 \): \[ f(-1) = \int_{-2}^{-1} \frac{e^{\frac{2 + u}{u}}}{u^2} du \] This integral is finite. 2. As \( x \to \infty \): The upper limit of the integral goes to infinity, and we need to check if \( f(x) \) diverges or converges. ### Step 6: Determine the Range From the analysis, we can see that \( f(x) \) is continuous and bounded. We also notice that as \( x \) increases, the integral tends to decrease because of the negative exponent in the denominator. ### Conclusion After evaluating the limits and behavior of the function, we find that \( f(x) \) is always less than \( \frac{1}{2} \) for all \( x \). Therefore, the greatest integer in the range of \( f(x) \) is: \[ \boxed{0} \]

To solve the given problem, we will analyze the function \( f(x) \) defined as: \[ f(x) = \int_{-1}^{x} \frac{e^{\frac{x-t}{x-2-t}}}{(x-2-t)^2} dt \] We want to find the greatest integer in the range of \( f(x) \). ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

Consider f(x)=int_(-1)^(x)(e^((x-t)/(x-2-t))dt)/(x-2-t)^(2) Q. The y-intercept of tangent drawn to graph of y=f(x) at x=-1 is

If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then

Let f(x)=int_(2)^(x)f(t^(2)-3t+4)dt . Then

Let f(x)=int_(0)^(x)e^(t)(t-1)(t-2)dt. Then, f decreases in the interval

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

Let f(x) be a derivable function satisfying f(x)=int_0^x e^t sin(x-t) dt and g(x)=f '' (x)-f(x) Then the possible integers in the range of g(x) is_______

Let f(x)=int_(0)^(x)(e^(t))/(t)dt(xgt0), then e^(-a)[f(x+1)-f(1+a)]=

if f(x)=int_(-1)^(x)t(e^(t)-1)(t-1)(t-2)^(3)(t-3)^(5)dt has a local minimum then sum of values of x

If f(x)=int_(1)^(x) (log t)/(1+t) dt"then" f(x)+f((1)/(x)) is equal to

If f(x)=int_(x^(2))^(x^(2)+1)e^(-t^(2))dt , then find the interval in which f(x) increases.

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. Consider f(x)=int(-1)^(x)(e^((x-t)/(x-2-t))dt)/(x-2-t)^(2) Q. The gr...

    Text Solution

    |

  2. The least positive vlaue of the parameter 'a' for which there exist at...

    Text Solution

    |

  3. The locus of the midpoint of a chord of the circle x^2+y^2=4 which sub...

    Text Solution

    |

  4. If f(x)=x + tan x and f si the inverse of g, then g'(x) equals

    Text Solution

    |

  5. Tangents PA and PB are drawn to parabola y^(2)=4x from any arbitrary p...

    Text Solution

    |

  6. If lim(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" ...

    Text Solution

    |

  7. Eccentricity of ellipse 2(x-y+1)^(2)+3(x+y+2)^(2)=5 is

    Text Solution

    |

  8. If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y. Then which ...

    Text Solution

    |

  9. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  10. tan^(-1)(sinx)=sin^(-1)(tanx) holds true for

    Text Solution

    |

  11. The function f(x) = (x^(2) - 1)|x^(2) - 3x + 3|+cos (|x|) is not diffe...

    Text Solution

    |

  12. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  13. If the normals at (x(i),y(i)) i=1,2,3,4 to the rectangular hyperbola x...

    Text Solution

    |

  14. Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le...

    Text Solution

    |

  15. The sum of the roots of the equation tan^(-1)(x+3)-tan^(-1)(x-3)="sin"...

    Text Solution

    |

  16. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  17. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  18. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then

    Text Solution

    |

  19. For the curve y=4x^3-2x^5, find all the points at which the tangents p...

    Text Solution

    |

  20. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  21. If y + b = m(1)(x + a) and y + b = m(2)(x+a) are two tangents to the p...

    Text Solution

    |