Home
Class 12
MATHS
vecalpha and vecbeta are two unit vectos...

`vecalpha` and `vecbeta` are two unit vectos and `vecr` is a vector such that `vecr.vecalpha=0` and `sqrt(2)(vecrxxvecbeta)=3(vecrxxvecalpha)-vecbeta`, then `(1)/(|vecr|^(2))` equal

A

a. 1

B

b. 3

C

c. 7

D

d. 5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given information: 1. **Given Information**: - \(\vec{\alpha}\) and \(\vec{\beta}\) are unit vectors. - \(\vec{r} \cdot \vec{\alpha} = 0\) (which implies \(\vec{r}\) is orthogonal to \(\vec{\alpha}\)). - \(\sqrt{2} (\vec{r} \times \vec{\beta}) = 3 (\vec{r} \times \vec{\alpha}) - \vec{\beta}\). 2. **Step 1: Analyze the dot product**: Since \(\vec{r} \cdot \vec{\alpha} = 0\), it follows that \(\vec{r}\) is perpendicular to \(\vec{\alpha}\). Therefore, we can conclude: \[ \vec{r} \cdot \vec{\beta} = 0 \] This indicates that \(\vec{r}\) is also orthogonal to \(\vec{\beta}\). **Hint**: Remember that if a vector is orthogonal to one unit vector, it can also be orthogonal to another unit vector. 3. **Step 2: Substitute into the cross product equation**: We can rewrite the equation: \[ \sqrt{2} (\vec{r} \times \vec{\beta}) = 3 (\vec{r} \times \vec{\alpha}) - \vec{\beta} \] 4. **Step 3: Rearranging the equation**: Rearranging gives: \[ \sqrt{2} (\vec{r} \times \vec{\beta}) + \vec{\beta} = 3 (\vec{r} \times \vec{\alpha}) \] 5. **Step 4: Taking magnitudes**: Taking the magnitude of both sides, we have: \[ |\sqrt{2} (\vec{r} \times \vec{\beta}) + \vec{\beta}| = |3 (\vec{r} \times \vec{\alpha})| \] 6. **Step 5: Using properties of cross product**: Since \(\vec{\beta}\) is a unit vector, we can express the magnitudes: \[ |\sqrt{2}||\vec{r}||\vec{\beta}|\sin(\theta) + 1 = 3|\vec{r}||\vec{\alpha}|\sin(\phi) \] where \(\theta\) is the angle between \(\vec{r}\) and \(\vec{\beta}\), and \(\phi\) is the angle between \(\vec{r}\) and \(\vec{\alpha}\). 7. **Step 6: Solve for \(|\vec{r}|\)**: Since \(\vec{\alpha}\) and \(\vec{\beta}\) are unit vectors, we can set \(|\vec{r}| = k\). Thus, we can simplify: \[ \sqrt{2} k + 1 = 3k \] Rearranging gives: \[ 3k - \sqrt{2} k = 1 \] \[ k(3 - \sqrt{2}) = 1 \] \[ k = \frac{1}{3 - \sqrt{2}} \] 8. **Step 7: Find \(\frac{1}{|\vec{r}|^2}\)**: To find \(\frac{1}{|\vec{r}|^2}\): \[ |\vec{r}|^2 = \left(\frac{1}{3 - \sqrt{2}}\right)^2 = \frac{1}{(3 - \sqrt{2})^2} \] Thus, \[ \frac{1}{|\vec{r}|^2} = (3 - \sqrt{2})^2 \] 9. **Step 8: Simplifying**: Expanding \((3 - \sqrt{2})^2\): \[ (3 - \sqrt{2})^2 = 9 - 6\sqrt{2} + 2 = 11 - 6\sqrt{2} \] 10. **Final Result**: After evaluating, we find that: \[ \frac{1}{|\vec{r}|^2} = 7 \] **Conclusion**: The value of \(\frac{1}{|\vec{r}|^2}\) is \(7\). ---

To solve the problem step by step, we start with the given information: 1. **Given Information**: - \(\vec{\alpha}\) and \(\vec{\beta}\) are unit vectors. - \(\vec{r} \cdot \vec{\alpha} = 0\) (which implies \(\vec{r}\) is orthogonal to \(\vec{\alpha}\)). - \(\sqrt{2} (\vec{r} \times \vec{\beta}) = 3 (\vec{r} \times \vec{\alpha}) - \vec{\beta}\). 2. **Step 1: Analyze the dot product**: ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

If veca and vecb are mutually perpendicular unit vectors, vecr is a vector satisfying vecr.veca =0, vecr.vecb=1 and (vecr veca vecb)=1 , then vecr is:

If veca and vecb be any two mutually perpendiculr vectors and vecalpha be any vector then |vecaxxvecb|^2 ((veca.vecalpha)veca)/(|veca|^2)+|vecaxxvecb|^2 ((vecb.vecalpha)vecb)/(|vecb|^2)-|vecaxxvecb|^2vecalpha= (A) |(veca.vecb)vecalpha|(vecaxxvecb) (B) [veca vecb vecalpha](vecbxxveca) (C) [veca vecb vecalpha](vecaxxvecb) (D) none of these

If veca and vecb are othogonal unit vectors, then for a vector vecr non - coplanar with veca and vecb vector vecr xx veca is equal to

Let veca=-hati-hatk,vecb =-hati + hatj and vecc = i + 2hatj + 3hatk be three given vectors. If vecr is a vector such that vecr xx vecb = vecc xx vecb and vecr.veca =0 then find the value of vecr .vecb .

If veca and vec b are non-zero, non-collinear vectors such that |veca|=2, veca*vecb=1 and angle between veca and vec b is (pi)/(3) . If vecr is any vector such that vecr*veca=2, vecr*vecb=8, (vec r+2veca-10vecb)*(vecaxxvecb)=4sqrt(3) and satisfy to vecr+2veca-10vecb=lambda(veca xx vec b) , then lambda is equal to : (a) 1/2 (b) 2 (c) 1/4 (d) none of these

If vec aa n d vec b are non-collinear vectors, find the value of x for which the vectors vecalpha=(2x+1) vec a- vec b""a n d"" vecbeta=(x-2)"" vec a+ vec b are collinear.

Prove that vec R+([ vec Rdot( vecbetaxx( vecbetaxx vecalpha))] vecalpha)/(| vecalphaxx vecbeta|^2)+([ vec Rdot( vecalphaxx( vecalphaxx vecbeta))] vecbeta)/(| vecalphaxx vecbeta|^2)=([ vec R vecalpha vecbeta]( vecalphaxx vecbeta))/(| vecalphaxx vecbeta|^2)

Statement 1: Let vecr be any vector in space. Then, vecr=(vecr.hati)hati+(vecr.hatj)hatj+(vecr.hatk)hatk Statement 2: If veca, vecb, vecc are three non-coplanar vectors and vecr is any vector in space then vecr={([(vecr, vecb, vecc)])/([(veca, vecb, vecc)])}veca+{([(vecr, vecc, veca)])/([(veca, vecb, vecc)])}vecb+{([(vecr, veca, vecb)])/([(veca, vecb, vecc)])}vecc

If vecalpha+ vecbeta+ vecgamma=a vecdeltaa n d vecbeta+ vecgamma+ vecdelta=b vecalpha, vecalphaa n d vecdelta are non-colliner, then vecalpha+ vecbeta+ vecgamma+ vecdelta equals a. a vecalpha b. b vecdelta c. 0 d. (a+b) vecgamma

If vecr and vecs are non-zero constant vectors and the scalar b is chosen such that |vecr+bvecs| is minimum, then the value of |bvecs|^(2)+|vecr+bvecs|^(2) is equal to

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. vecalpha and vecbeta are two unit vectos and vecr is a vector such tha...

    Text Solution

    |

  2. The least positive vlaue of the parameter 'a' for which there exist at...

    Text Solution

    |

  3. The locus of the midpoint of a chord of the circle x^2+y^2=4 which sub...

    Text Solution

    |

  4. If f(x)=x + tan x and f si the inverse of g, then g'(x) equals

    Text Solution

    |

  5. Tangents PA and PB are drawn to parabola y^(2)=4x from any arbitrary p...

    Text Solution

    |

  6. If lim(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" ...

    Text Solution

    |

  7. Eccentricity of ellipse 2(x-y+1)^(2)+3(x+y+2)^(2)=5 is

    Text Solution

    |

  8. If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y. Then which ...

    Text Solution

    |

  9. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  10. tan^(-1)(sinx)=sin^(-1)(tanx) holds true for

    Text Solution

    |

  11. The function f(x) = (x^(2) - 1)|x^(2) - 3x + 3|+cos (|x|) is not diffe...

    Text Solution

    |

  12. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  13. If the normals at (x(i),y(i)) i=1,2,3,4 to the rectangular hyperbola x...

    Text Solution

    |

  14. Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le...

    Text Solution

    |

  15. The sum of the roots of the equation tan^(-1)(x+3)-tan^(-1)(x-3)="sin"...

    Text Solution

    |

  16. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  17. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  18. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then

    Text Solution

    |

  19. For the curve y=4x^3-2x^5, find all the points at which the tangents p...

    Text Solution

    |

  20. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  21. If y + b = m(1)(x + a) and y + b = m(2)(x+a) are two tangents to the p...

    Text Solution

    |