Home
Class 12
MATHS
If veca, vecb, vecc are non coplanar vec...

If `veca, vecb, vecc` are non coplanar vectors such that `vecbxxvecc=veca, vecaxxvecb=vecc and veccxxveca=vecb` then (A) `|veca|+|vecb|+|vecc|=3` (B) `|vecb|=1` (C) `|veca|=1` (D) none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given vector equations: 1. \(\vec{b} \times \vec{c} = \vec{a}\) 2. \(\vec{a} \times \vec{b} = \vec{c}\) 3. \(\vec{c} \times \vec{a} = \vec{b}\) ### Step 1: Taking the dot product of the first equation with \(\vec{a}\) We take the dot product of the first equation with \(\vec{a}\): \[ \vec{b} \times \vec{c} \cdot \vec{a} = \vec{a} \cdot \vec{a} \] Using the property of the dot product and cross product, we know: \[ \vec{b} \times \vec{c} \cdot \vec{a} = \det(\vec{a}, \vec{b}, \vec{c}) = |\vec{a}|^2 \] Thus, we have: \[ |\vec{a}|^2 = \det(\vec{a}, \vec{b}, \vec{c}) \] ### Step 2: Taking the dot product of the second equation with \(\vec{c}\) Next, we take the dot product of the second equation with \(\vec{c}\): \[ \vec{a} \times \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{c} \] Again using the property of the dot product and cross product, we have: \[ \vec{a} \times \vec{b} \cdot \vec{c} = \det(\vec{a}, \vec{b}, \vec{c}) = |\vec{c}|^2 \] So, we get: \[ |\vec{c}|^2 = \det(\vec{a}, \vec{b}, \vec{c}) \] ### Step 3: Taking the dot product of the third equation with \(\vec{b}\) Now, we take the dot product of the third equation with \(\vec{b}\): \[ \vec{c} \times \vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{b} \] Using the same property, we have: \[ \vec{c} \times \vec{a} \cdot \vec{b} = \det(\vec{a}, \vec{b}, \vec{c}) = |\vec{b}|^2 \] Thus, we conclude: \[ |\vec{b}|^2 = \det(\vec{a}, \vec{b}, \vec{c}) \] ### Step 4: Equating the magnitudes From the above equations, we have: \[ |\vec{a}|^2 = |\vec{b}|^2 = |\vec{c}|^2 \] Let \(k = |\vec{a}| = |\vec{b}| = |\vec{c}|\). Therefore, we can write: \[ |\vec{a}|^2 = k^2, \quad |\vec{b}|^2 = k^2, \quad |\vec{c}|^2 = k^2 \] ### Step 5: Summing the magnitudes Now, we can sum the magnitudes: \[ |\vec{a}| + |\vec{b}| + |\vec{c}| = k + k + k = 3k \] ### Step 6: Finding the value of \(k\) Given that the vectors are non-coplanar and the conditions imply that each vector has the same magnitude, we can assume \(k = 1\) (as a unit vector). Therefore: \[ |\vec{a}| + |\vec{b}| + |\vec{c}| = 3 \cdot 1 = 3 \] ### Conclusion Thus, we conclude that: - (A) \(|\vec{a}| + |\vec{b}| + |\vec{c}| = 3\) is correct. - (B) \(|\vec{b}| = 1\) is correct. - (C) \(|\vec{a}| = 1\) is correct. - (D) None of these is incorrect. ### Final Answer The correct options are (A), (B), and (C). ---

To solve the problem, we start with the given vector equations: 1. \(\vec{b} \times \vec{c} = \vec{a}\) 2. \(\vec{a} \times \vec{b} = \vec{c}\) 3. \(\vec{c} \times \vec{a} = \vec{b}\) ### Step 1: Taking the dot product of the first equation with \(\vec{a}\) ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

If veca,vecb and vecc are non coplaner vectors such that vecbxxvecc=veca , veccxxveca=vecb and vecaxxvecb=vecc then |veca+vecb+vecc| =

if veca,vecb,vecc are non coplanar and non zero vectors such that vecbxxvecc=veca,vecaxxvecb=vecc and veccxxveca=vecb then 1 (a) |a|=1 (b)|a|=2 (c) |a|=3 (d) |a|=4

if veca,vecb,vecc are non coplanar and non zero vectors such that vecbxxvecc=veca,vecaxxvecb=vecc and veccxxveca=vecb then 3. (a) |a|+|b|+|c| =0 (b) |a|+|b|+|c|=2 (c) |a|+|b|+|c| =3 (d) none of these

If veca, vecb,vecc are three non-coplanar vectors such that veca xx vecb=vecc,vecb xx vecc=veca,vecc xx veca=vecb , then the value of |veca|+|vecb|+|vecc| is

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|

If veca, vecb, vecc are any three vectors such that (veca+vecb).vecc=(veca-vecb)vecc=0 then (vecaxxvecb)xxvecc is

If veca, vecb, vecc are non-null non coplanar vectors, then [(veca-2vecb+vecc, vecb-2vecc+veca, vecc-2veca+vecb)]=

If veca,vecb,vecc are coplanar then show that vecaxxvecb, vecbxxvecc and veccxxveca are also coplanar.

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. If veca, vecb, vecc are non coplanar vectors such that vecbxxvecc=veca...

    Text Solution

    |

  2. The least positive vlaue of the parameter 'a' for which there exist at...

    Text Solution

    |

  3. The locus of the midpoint of a chord of the circle x^2+y^2=4 which sub...

    Text Solution

    |

  4. If f(x)=x + tan x and f si the inverse of g, then g'(x) equals

    Text Solution

    |

  5. Tangents PA and PB are drawn to parabola y^(2)=4x from any arbitrary p...

    Text Solution

    |

  6. If lim(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" ...

    Text Solution

    |

  7. Eccentricity of ellipse 2(x-y+1)^(2)+3(x+y+2)^(2)=5 is

    Text Solution

    |

  8. If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y. Then which ...

    Text Solution

    |

  9. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  10. tan^(-1)(sinx)=sin^(-1)(tanx) holds true for

    Text Solution

    |

  11. The function f(x) = (x^(2) - 1)|x^(2) - 3x + 3|+cos (|x|) is not diffe...

    Text Solution

    |

  12. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  13. If the normals at (x(i),y(i)) i=1,2,3,4 to the rectangular hyperbola x...

    Text Solution

    |

  14. Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le...

    Text Solution

    |

  15. The sum of the roots of the equation tan^(-1)(x+3)-tan^(-1)(x-3)="sin"...

    Text Solution

    |

  16. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  17. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  18. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then

    Text Solution

    |

  19. For the curve y=4x^3-2x^5, find all the points at which the tangents p...

    Text Solution

    |

  20. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  21. If y + b = m(1)(x + a) and y + b = m(2)(x+a) are two tangents to the p...

    Text Solution

    |