Home
Class 12
MATHS
f(x)=log(5)(cos^(-1)sqrt(x^(2)+5x+6)+sec...

`f(x)=log_(5)(cos^(-1)sqrt(x^(2)+5x+6)+sec^(-1)[{x}+1]([.]` denotes greatest integer function and `{.}` denotes fractional part function. Find the domain of `f(x)`:

A

`[(-5-sqrt(5))/(2),-3]cup[-2,(-5+sqrt(5))/(2)]`

B

`[(-sqrt(5)+5)/(2),-3]cup[-2,(5+sqrt(5))/(2))`

C

`((-5+sqrt(5))/(4),-3]cup[-2,(-5+sqrt(5))/(4))`

D

`((-5-sqrt(5))/(2),-3]cup[-2,(-5+sqrt(5))/(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) = \log_{5} \left( \cos^{-1} \sqrt{x^{2} + 5x + 6} + \sec^{-1} \left( \lfloor x \rfloor + 1 \right) \right) \), we need to ensure that the arguments of both the logarithm and the inverse trigonometric functions are valid. ### Step 1: Analyze the expression inside the logarithm The function \( \log_{5}(y) \) is defined for \( y > 0 \). Therefore, we need: \[ \cos^{-1} \sqrt{x^{2} + 5x + 6} + \sec^{-1} \left( \lfloor x \rfloor + 1 \right) > 0 \] ### Step 2: Determine the domain of \( \cos^{-1} \) The function \( \cos^{-1}(z) \) is defined for \( z \) in the range \( [0, 1] \). Thus, we need: \[ 0 \leq \sqrt{x^{2} + 5x + 6} \leq 1 \] ### Step 3: Solve the inequality \( \sqrt{x^{2} + 5x + 6} \leq 1 \) Squaring both sides: \[ x^{2} + 5x + 6 \leq 1 \] \[ x^{2} + 5x + 5 \leq 0 \] ### Step 4: Find the roots of the quadratic equation To find the roots of \( x^{2} + 5x + 5 = 0 \), we use the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} = \frac{-5 \pm \sqrt{25 - 20}}{2} = \frac{-5 \pm \sqrt{5}}{2} \] Thus, the roots are: \[ x = \frac{-5 + \sqrt{5}}{2}, \quad x = \frac{-5 - \sqrt{5}}{2} \] ### Step 5: Analyze the intervals The quadratic \( x^{2} + 5x + 5 \) opens upwards (since the coefficient of \( x^{2} \) is positive). The inequality \( x^{2} + 5x + 5 \leq 0 \) holds between the roots: \[ \frac{-5 - \sqrt{5}}{2} \leq x \leq \frac{-5 + \sqrt{5}}{2} \] ### Step 6: Determine the domain of \( \sec^{-1} \) The function \( \sec^{-1}(z) \) is defined for \( |z| \geq 1 \). Therefore, we need: \[ |\lfloor x \rfloor + 1| \geq 1 \] This implies: \[ \lfloor x \rfloor + 1 \leq -1 \quad \text{or} \quad \lfloor x \rfloor + 1 \geq 1 \] Which simplifies to: \[ \lfloor x \rfloor \leq -2 \quad \text{or} \quad \lfloor x \rfloor \geq 0 \] ### Step 7: Combine the conditions From the analysis, we have two conditions: 1. \( \frac{-5 - \sqrt{5}}{2} \leq x \leq \frac{-5 + \sqrt{5}}{2} \) 2. \( \lfloor x \rfloor \leq -2 \) or \( \lfloor x \rfloor \geq 0 \) ### Step 8: Find the intersection of these intervals Calculating the approximate values: - \( \frac{-5 - \sqrt{5}}{2} \approx -4.618 \) - \( \frac{-5 + \sqrt{5}}{2} \approx -0.382 \) Thus, the interval for \( x \) is approximately \( [-4.618, -0.382] \). ### Final Domain Combining the conditions, the domain of \( f(x) \) is: \[ \left[-5 - \frac{\sqrt{5}}{2}, -3\right] \cup \left[-2, -5 + \frac{\sqrt{5}}{2}\right] \] ### Conclusion Thus, the domain of \( f(x) \) is: \[ \left[-5 - \frac{\sqrt{5}}{2}, -3\right] \cup \left[-2, -5 + \frac{\sqrt{5}}{2}\right] \]

To find the domain of the function \( f(x) = \log_{5} \left( \cos^{-1} \sqrt{x^{2} + 5x + 6} + \sec^{-1} \left( \lfloor x \rfloor + 1 \right) \right) \), we need to ensure that the arguments of both the logarithm and the inverse trigonometric functions are valid. ### Step 1: Analyze the expression inside the logarithm The function \( \log_{5}(y) \) is defined for \( y > 0 \). Therefore, we need: \[ \cos^{-1} \sqrt{x^{2} + 5x + 6} + \sec^{-1} \left( \lfloor x \rfloor + 1 \right) > 0 \] ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

Solve 1/[x]+1/([2x])= {x}+1/3 where [.] denotes the greatest integers function and{.} denotes fractional part function.

Solve : 4{x}= x+ [x] (where [*] denotes the greatest integer function and {*} denotes the fractional part function.

If f(x)=[sin^(2) x] ([.] denotes the greatest integer function), then

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

f(x)=cos^-1sqrt(log_([x]) ((|x|)/x)) where [.] denotes the greatest integer function

Range of f(x)=sin^(-1)[x-1]+2cos^(-1)[x-2] ([.] denotes greatest integer function)

draw the graph of f(x)=x+[x] , [.] denotes greatest integer function.

Draw the graph of f(x)=x+[x], [.] denotes greatest integer function.

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then the

Domain of f(x)=log(x^2+5x+6)/([x]-1) where [.] denotes greatest integer function:

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. f(x)=log(5)(cos^(-1)sqrt(x^(2)+5x+6)+sec^(-1)[{x}+1]([.] denotes great...

    Text Solution

    |

  2. The least positive vlaue of the parameter 'a' for which there exist at...

    Text Solution

    |

  3. The locus of the midpoint of a chord of the circle x^2+y^2=4 which sub...

    Text Solution

    |

  4. If f(x)=x + tan x and f si the inverse of g, then g'(x) equals

    Text Solution

    |

  5. Tangents PA and PB are drawn to parabola y^(2)=4x from any arbitrary p...

    Text Solution

    |

  6. If lim(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" ...

    Text Solution

    |

  7. Eccentricity of ellipse 2(x-y+1)^(2)+3(x+y+2)^(2)=5 is

    Text Solution

    |

  8. If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y. Then which ...

    Text Solution

    |

  9. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  10. tan^(-1)(sinx)=sin^(-1)(tanx) holds true for

    Text Solution

    |

  11. The function f(x) = (x^(2) - 1)|x^(2) - 3x + 3|+cos (|x|) is not diffe...

    Text Solution

    |

  12. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  13. If the normals at (x(i),y(i)) i=1,2,3,4 to the rectangular hyperbola x...

    Text Solution

    |

  14. Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le...

    Text Solution

    |

  15. The sum of the roots of the equation tan^(-1)(x+3)-tan^(-1)(x-3)="sin"...

    Text Solution

    |

  16. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  17. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  18. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then

    Text Solution

    |

  19. For the curve y=4x^3-2x^5, find all the points at which the tangents p...

    Text Solution

    |

  20. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  21. If y + b = m(1)(x + a) and y + b = m(2)(x+a) are two tangents to the p...

    Text Solution

    |