Home
Class 12
MATHS
Function g(x)=2f((x^(2))/(2))+f(6-x^(2))...

Function `g(x)=2f((x^(2))/(2))+f(6-x^(2))` for all `xepsilonR` is decreasing and `f^(``)(x)gt0` for all `xepsilonR` then complete set of values of x is

A

`(-2,2)`

B

`(-infty,-2)cup(0,2)`

C

`(2,infty)`

D

`(2,4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( g(x) = 2f\left(\frac{x^2}{2}\right) + f(6 - x^2) \) under the conditions that \( g(x) \) is decreasing and \( f'(x) > 0 \) for all \( x \in \mathbb{R} \). ### Step-by-Step Solution: 1. **Understanding the Given Conditions**: - The function \( g(x) \) is decreasing, which means that its derivative \( g'(x) < 0 \) for all \( x \in \mathbb{R} \). - The function \( f \) is strictly increasing since \( f'(x) > 0 \) for all \( x \). 2. **Finding the Derivative of \( g(x) \)**: - We compute the derivative \( g'(x) \): \[ g'(x) = 2 \cdot f'\left(\frac{x^2}{2}\right) \cdot \left(\frac{d}{dx}\left(\frac{x^2}{2}\right)\right) + f'(6 - x^2) \cdot \left(\frac{d}{dx}(6 - x^2)\right) \] - This simplifies to: \[ g'(x) = 2 \cdot f'\left(\frac{x^2}{2}\right) \cdot x + f'(6 - x^2) \cdot (-2x) \] - Thus, we have: \[ g'(x) = 2x \left( f'\left(\frac{x^2}{2}\right) - f'(6 - x^2) \right) \] 3. **Setting the Derivative Less Than Zero**: - For \( g(x) \) to be decreasing, we need: \[ 2x \left( f'\left(\frac{x^2}{2}\right) - f'(6 - x^2) \right) < 0 \] - This means either \( x > 0 \) and \( f'\left(\frac{x^2}{2}\right) < f'(6 - x^2) \) or \( x < 0 \) and \( f'\left(\frac{x^2}{2}\right) > f'(6 - x^2) \). 4. **Analyzing the Cases**: - **Case 1**: If \( x > 0 \): - We have \( f'\left(\frac{x^2}{2}\right) < f'(6 - x^2) \). - Since \( f' \) is increasing, this implies: \[ \frac{x^2}{2} < 6 - x^2 \] - Rearranging gives: \[ \frac{3x^2}{2} < 6 \implies x^2 < 4 \implies -2 < x < 2 \] - Since \( x > 0 \), we have \( 0 < x < 2 \). - **Case 2**: If \( x < 0 \): - We have \( f'\left(\frac{x^2}{2}\right) > f'(6 - x^2) \). - Again, since \( f' \) is increasing: \[ \frac{x^2}{2} > 6 - x^2 \] - Rearranging gives: \[ \frac{3x^2}{2} > 6 \implies x^2 > 4 \implies x < -2 \text{ or } x > 2 \] - Since \( x < 0 \), we have \( x < -2 \). 5. **Combining the Results**: - From Case 1, we have \( x \in (0, 2) \). - From Case 2, we have \( x \in (-\infty, -2) \). - Therefore, the complete set of values of \( x \) for which \( g(x) \) is decreasing is: \[ x \in (-\infty, -2) \cup (0, 2) \] ### Final Answer: The complete set of values of \( x \) is \( (-\infty, -2) \cup (0, 2) \).

To solve the problem, we need to analyze the function \( g(x) = 2f\left(\frac{x^2}{2}\right) + f(6 - x^2) \) under the conditions that \( g(x) \) is decreasing and \( f'(x) > 0 \) for all \( x \in \mathbb{R} \). ### Step-by-Step Solution: 1. **Understanding the Given Conditions**: - The function \( g(x) \) is decreasing, which means that its derivative \( g'(x) < 0 \) for all \( x \in \mathbb{R} \). - The function \( f \) is strictly increasing since \( f'(x) > 0 \) for all \( x \). ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

If f(x) is a differentiable function satisfying f^(')(x)lt2 for all xepsilonR and f(1)=2, then greatest possible integral value of f(3) is

If f(x) ge0 for all x, then f(2-x) is

Let g(x) =f(x)-2{f(x)}^2+9{f(x)}^3 for all x in R Then

If f'(x^2-4x+3)gt0 " for all " x in (2,3) then f(sinx) is increasing on

Prove that function f(x) = {-2x^(3)+3x^(2)-6x+5,xlt0 -x^(2)-x+1, xge0 is decreasing for all x.

The first and second order derivatives of a function f(x) exit at all point in (a,b) with f'( c) =0 , where altcltb , of c and f'(x)gt0 for all points on the immediate right of c, and f'(x)lt0 for all points on the immediate left of c then at x=c , , f(x) has a

Let the function f satisfies f(x).f ′ (−x)=f(−x).f ′ (x) for all x and f(0)=3 The value of f(x).f(-x) for all x is

Let (f(x+y)-f(x))/(2)=(f(y)-1)/(2)+xy , for all x,yinR,f(x) is differentiable and f'(0)=1. Let g(x) be a derivable function at x=0 and follows the function rule g((x+y)/(k))=(g(x)+g(y))/(k),kinR,kne0,2andg'(0)-lambdag'(0)ne0. If the graphs of y=f(x) and y=g(x) intersect in coincident points then lambda can take values

If f(x)=2 for all real numbers x, then f(x+2)=

A function g(x) is defined g(x)=2f(x^2/2)+f(6-x^2),AA x in R such f''(x)> 0, AA x in R , then m g(x) has

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. Function g(x)=2f((x^(2))/(2))+f(6-x^(2)) for all xepsilonR is decreasi...

    Text Solution

    |

  2. The least positive vlaue of the parameter 'a' for which there exist at...

    Text Solution

    |

  3. The locus of the midpoint of a chord of the circle x^2+y^2=4 which sub...

    Text Solution

    |

  4. If f(x)=x + tan x and f si the inverse of g, then g'(x) equals

    Text Solution

    |

  5. Tangents PA and PB are drawn to parabola y^(2)=4x from any arbitrary p...

    Text Solution

    |

  6. If lim(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" ...

    Text Solution

    |

  7. Eccentricity of ellipse 2(x-y+1)^(2)+3(x+y+2)^(2)=5 is

    Text Solution

    |

  8. If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y. Then which ...

    Text Solution

    |

  9. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  10. tan^(-1)(sinx)=sin^(-1)(tanx) holds true for

    Text Solution

    |

  11. The function f(x) = (x^(2) - 1)|x^(2) - 3x + 3|+cos (|x|) is not diffe...

    Text Solution

    |

  12. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  13. If the normals at (x(i),y(i)) i=1,2,3,4 to the rectangular hyperbola x...

    Text Solution

    |

  14. Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le...

    Text Solution

    |

  15. The sum of the roots of the equation tan^(-1)(x+3)-tan^(-1)(x-3)="sin"...

    Text Solution

    |

  16. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  17. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  18. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then

    Text Solution

    |

  19. For the curve y=4x^3-2x^5, find all the points at which the tangents p...

    Text Solution

    |

  20. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  21. If y + b = m(1)(x + a) and y + b = m(2)(x+a) are two tangents to the p...

    Text Solution

    |