Home
Class 12
MATHS
if tan^(-1)(2x)+tan^(-1)(3x)=npi+(pi)/(4...

if `tan^(-1)(2x)+tan^(-1)(3x)=npi+(pi)/(4),nepsilonI` then number of order pair (s) `(n,x)` is (are)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan^{-1}(2x) + \tan^{-1}(3x) = n\pi + \frac{\pi}{4} \), we will follow these steps: ### Step 1: Use the addition formula for inverse tangent We know that: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a + b}{1 - ab}\right) \] provided \( ab < 1 \). Applying this to our equation: \[ \tan^{-1}(2x) + \tan^{-1}(3x) = \tan^{-1}\left(\frac{2x + 3x}{1 - 2x \cdot 3x}\right) = \tan^{-1}\left(\frac{5x}{1 - 6x^2}\right) \] ### Step 2: Set the equation Now we can rewrite the equation as: \[ \tan^{-1}\left(\frac{5x}{1 - 6x^2}\right) = n\pi + \frac{\pi}{4} \] ### Step 3: Remove the inverse tangent Taking the tangent of both sides gives us: \[ \frac{5x}{1 - 6x^2} = \tan\left(n\pi + \frac{\pi}{4}\right) \] Since \( \tan(n\pi + \frac{\pi}{4}) = \tan\left(\frac{\pi}{4}\right) = 1 \), we have: \[ \frac{5x}{1 - 6x^2} = 1 \] ### Step 4: Cross-multiply and rearrange Cross-multiplying gives: \[ 5x = 1 - 6x^2 \] Rearranging this equation results in: \[ 6x^2 + 5x - 1 = 0 \] ### Step 5: Solve the quadratic equation We can use the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \) where \( a = 6, b = 5, c = -1 \): \[ x = \frac{-5 \pm \sqrt{5^2 - 4 \cdot 6 \cdot (-1)}}{2 \cdot 6} \] \[ x = \frac{-5 \pm \sqrt{25 + 24}}{12} \] \[ x = \frac{-5 \pm \sqrt{49}}{12} \] \[ x = \frac{-5 \pm 7}{12} \] Calculating the two possible values for \( x \): 1. \( x = \frac{2}{12} = \frac{1}{6} \) 2. \( x = \frac{-12}{12} = -1 \) ### Step 6: Find corresponding \( n \) values Now we substitute \( x = -1 \) and \( x = \frac{1}{6} \) back into the original equation to find \( n \). 1. For \( x = -1 \): \[ n\pi + \frac{\pi}{4} = \tan^{-1}\left(\frac{5(-1)}{1 - 6(-1)^2}\right) = \tan^{-1}\left(\frac{-5}{1 - 6}\right) = \tan^{-1}(5) \] This gives: \[ n\pi + \frac{\pi}{4} = \frac{\pi}{4} \implies n = 0 \] So, one ordered pair is \( (0, -1) \). 2. For \( x = \frac{1}{6} \): \[ n\pi + \frac{\pi}{4} = \tan^{-1}\left(\frac{5 \cdot \frac{1}{6}}{1 - 6 \cdot \left(\frac{1}{6}\right)^2}\right) = \tan^{-1}\left(\frac{\frac{5}{6}}{1 - \frac{1}{6}}\right) = \tan^{-1}\left(\frac{\frac{5}{6}}{\frac{5}{6}}\right) = \tan^{-1}(1) \] This gives: \[ n\pi + \frac{\pi}{4} = \frac{\pi}{4} \implies n = 0 \] So, the second ordered pair is \( (0, \frac{1}{6}) \). ### Conclusion The number of ordered pairs \( (n, x) \) is \( 2 \): 1. \( (0, -1) \) 2. \( (0, \frac{1}{6}) \)

To solve the equation \( \tan^{-1}(2x) + \tan^{-1}(3x) = n\pi + \frac{\pi}{4} \), we will follow these steps: ### Step 1: Use the addition formula for inverse tangent We know that: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a + b}{1 - ab}\right) \] provided \( ab < 1 \). ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

Solve tan^(-1)2x+tan^(-1)3x=pi/4 .

Solve : tan^(-1)2x+tan^(-1)3x=pi/4

Solve : tan^(-1)2x+tan^(-1)3x=pi/4

If tan ^(-1) 2x + tan ^(-1) 3 xx = (pi)/(4) , then x = ?

If x and y are positive integer satisfying tan^(-1)((1)/(x))+tan^(-1)((1)/(y))=(1)/(7) , then the number of ordered pairs of (x,y) is

tan^(- 1)(a/x)+tan^(- 1)(b/x)=pi/2 then x=

tan^(- 1)(a/x)+tan^(- 1)(b/x)=pi/2 then x=

Solve the equation tan^(-1)2x+tan^(-1)3x=pi/4

tan^(- 1)(x+2/x)-tan^(- 1)(4/x)=tan^(- 1)(x-2/x)

Solve for x: tan^(-1)3x+tan^(-1)2x=pi/4

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. if tan^(-1)(2x)+tan^(-1)(3x)=npi+(pi)/(4),nepsilonI then number of ord...

    Text Solution

    |

  2. The least positive vlaue of the parameter 'a' for which there exist at...

    Text Solution

    |

  3. The locus of the midpoint of a chord of the circle x^2+y^2=4 which sub...

    Text Solution

    |

  4. If f(x)=x + tan x and f si the inverse of g, then g'(x) equals

    Text Solution

    |

  5. Tangents PA and PB are drawn to parabola y^(2)=4x from any arbitrary p...

    Text Solution

    |

  6. If lim(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" ...

    Text Solution

    |

  7. Eccentricity of ellipse 2(x-y+1)^(2)+3(x+y+2)^(2)=5 is

    Text Solution

    |

  8. If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y. Then which ...

    Text Solution

    |

  9. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  10. tan^(-1)(sinx)=sin^(-1)(tanx) holds true for

    Text Solution

    |

  11. The function f(x) = (x^(2) - 1)|x^(2) - 3x + 3|+cos (|x|) is not diffe...

    Text Solution

    |

  12. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  13. If the normals at (x(i),y(i)) i=1,2,3,4 to the rectangular hyperbola x...

    Text Solution

    |

  14. Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le...

    Text Solution

    |

  15. The sum of the roots of the equation tan^(-1)(x+3)-tan^(-1)(x-3)="sin"...

    Text Solution

    |

  16. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  17. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  18. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then

    Text Solution

    |

  19. For the curve y=4x^3-2x^5, find all the points at which the tangents p...

    Text Solution

    |

  20. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  21. If y + b = m(1)(x + a) and y + b = m(2)(x+a) are two tangents to the p...

    Text Solution

    |