Home
Class 12
MATHS
lim(xto0) (ln(2+x^(2))-ln(2-x^(2)))/(x^(...

`lim_(xto0) (ln(2+x^(2))-ln(2-x^(2)))/(x^(2))` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{\ln(2 + x^2) - \ln(2 - x^2)}{x^2} \), we can follow these steps: ### Step 1: Rewrite the limit using properties of logarithms Using the property of logarithms that states \( \ln a - \ln b = \ln \frac{a}{b} \), we can rewrite the expression: \[ \lim_{x \to 0} \frac{\ln\left(\frac{2 + x^2}{2 - x^2}\right)}{x^2} \] ### Step 2: Substitute \( x^2 \) with \( 2t \) To simplify the limit, we can make the substitution \( x^2 = 2t \). As \( x \to 0 \), \( t \to 0 \) as well. Thus, we rewrite the limit: \[ \lim_{t \to 0} \frac{\ln\left(\frac{2 + 2t}{2 - 2t}\right)}{2t} \] ### Step 3: Simplify the logarithmic expression Now, we can simplify the expression inside the logarithm: \[ \frac{2 + 2t}{2 - 2t} = \frac{2(1 + t)}{2(1 - t)} = \frac{1 + t}{1 - t} \] Thus, our limit becomes: \[ \lim_{t \to 0} \frac{\ln\left(\frac{1 + t}{1 - t}\right)}{2t} \] ### Step 4: Apply the logarithmic limit property Using the property of logarithms, we can separate the logarithm: \[ \ln\left(\frac{1 + t}{1 - t}\right) = \ln(1 + t) - \ln(1 - t) \] So, our limit can be rewritten as: \[ \lim_{t \to 0} \frac{\ln(1 + t) - \ln(1 - t)}{2t} \] ### Step 5: Use the standard limit We know from calculus that: \[ \lim_{u \to 0} \frac{\ln(1 + u)}{u} = 1 \] Thus, we can apply this limit: \[ \lim_{t \to 0} \frac{\ln(1 + t)}{t} = 1 \quad \text{and} \quad \lim_{t \to 0} \frac{\ln(1 - t)}{-t} = 1 \] Therefore, we can express our limit as: \[ \lim_{t \to 0} \frac{\ln(1 + t) - \ln(1 - t)}{2t} = \frac{1 + 1}{2} = 1 \] ### Final Result Thus, the limit is: \[ \lim_{x \to 0} \frac{\ln(2 + x^2) - \ln(2 - x^2)}{x^2} = 1 \]

To solve the limit \( \lim_{x \to 0} \frac{\ln(2 + x^2) - \ln(2 - x^2)}{x^2} \), we can follow these steps: ### Step 1: Rewrite the limit using properties of logarithms Using the property of logarithms that states \( \ln a - \ln b = \ln \frac{a}{b} \), we can rewrite the expression: \[ \lim_{x \to 0} \frac{\ln\left(\frac{2 + x^2}{2 - x^2}\right)}{x^2} \] ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

lim_(xto0) (1)/(x)cos^(1)((1-x^(2))/(1+x^2)) is equal to

lim_(xto0)(sin(picos^(2)(tan(sinx))))/(x^(2)) is equal to

lim_(xto0)(1-cos(x^(2)))/(x^(3)(4^(x)-1)) is equal to:

The value of lim_(xrarr 0) (e^x+log (1+x)-(1-x)^-2)/(x^2) is equal to

Evaluate lim_(xto0) (e^(x^(2))-cosx)/(x^(2))

lim_(xto0) (sin(picos^(2)x))/(x^(2)) is equal to

The value of lim_(xrarr0)(ln(1+2x+4x^(2))+ln(1-2x+4x^(2)))/(secx-cosx) is equal to

The value of lim_(xrarr0)(ln(2-cos15x))/(ln^(2)(sin3x+1)) is equal to

lim_(xto0) ((2^(m)+x)^(1//m)-(2^(n)+x)^(1//n))/(x) is equal to

The value of lim_(xrarr0)(ln(10-9cos2x))/(ln^(2)(sin3x+1)) is equal to

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. lim(xto0) (ln(2+x^(2))-ln(2-x^(2)))/(x^(2)) is equal to

    Text Solution

    |

  2. The least positive vlaue of the parameter 'a' for which there exist at...

    Text Solution

    |

  3. The locus of the midpoint of a chord of the circle x^2+y^2=4 which sub...

    Text Solution

    |

  4. If f(x)=x + tan x and f si the inverse of g, then g'(x) equals

    Text Solution

    |

  5. Tangents PA and PB are drawn to parabola y^(2)=4x from any arbitrary p...

    Text Solution

    |

  6. If lim(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" ...

    Text Solution

    |

  7. Eccentricity of ellipse 2(x-y+1)^(2)+3(x+y+2)^(2)=5 is

    Text Solution

    |

  8. If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y. Then which ...

    Text Solution

    |

  9. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  10. tan^(-1)(sinx)=sin^(-1)(tanx) holds true for

    Text Solution

    |

  11. The function f(x) = (x^(2) - 1)|x^(2) - 3x + 3|+cos (|x|) is not diffe...

    Text Solution

    |

  12. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  13. If the normals at (x(i),y(i)) i=1,2,3,4 to the rectangular hyperbola x...

    Text Solution

    |

  14. Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le...

    Text Solution

    |

  15. The sum of the roots of the equation tan^(-1)(x+3)-tan^(-1)(x-3)="sin"...

    Text Solution

    |

  16. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  17. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  18. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then

    Text Solution

    |

  19. For the curve y=4x^3-2x^5, find all the points at which the tangents p...

    Text Solution

    |

  20. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  21. If y + b = m(1)(x + a) and y + b = m(2)(x+a) are two tangents to the p...

    Text Solution

    |