Home
Class 12
MATHS
Let f(x)=e^(x),g(x)={:{(x^(2),if,xlt(1)/...

Let `f(x)=e^(x),g(x)={:{(x^(2),if,xlt(1)/(2)),(x-(1)/(4),if,xge(1)/(2)):}` and `h(x)=f(g(x))`. The derivative of `h(x)` and `x=(1)/(2)` is `e^((1)/(a))` then a equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the functions given and find the derivative of \( h(x) \) at \( x = \frac{1}{2} \). ### Step 1: Define the functions We have: - \( f(x) = e^x \) - \( g(x) = \begin{cases} x^2 & \text{if } x < \frac{1}{2} \\ x - \frac{1}{4} & \text{if } x \geq \frac{1}{2} \end{cases} \) ### Step 2: Define \( h(x) \) The function \( h(x) \) is defined as: \[ h(x) = f(g(x)) \] This means: - For \( x < \frac{1}{2} \), \( h(x) = f(g(x)) = f(x^2) = e^{x^2} \) - For \( x \geq \frac{1}{2} \), \( h(x) = f(g(x)) = f\left(x - \frac{1}{4}\right) = e^{x - \frac{1}{4}} \) ### Step 3: Evaluate \( h\left(\frac{1}{2}\right) \) Since \( \frac{1}{2} \) falls in the second case (where \( x \geq \frac{1}{2} \)): \[ h\left(\frac{1}{2}\right) = e^{\frac{1}{2} - \frac{1}{4}} = e^{\frac{1}{4}} \] ### Step 4: Find the derivative \( h'(x) \) Now, we need to find the derivative \( h'(x) \): - For \( x < \frac{1}{2} \): \[ h'(x) = \frac{d}{dx}(e^{x^2}) = e^{x^2} \cdot 2x \] - For \( x \geq \frac{1}{2} \): \[ h'(x) = \frac{d}{dx}(e^{x - \frac{1}{4}}) = e^{x - \frac{1}{4}} \cdot 1 = e^{x - \frac{1}{4}} \] ### Step 5: Evaluate \( h'\left(\frac{1}{2}\right) \) Using the second case for \( x \geq \frac{1}{2} \): \[ h'\left(\frac{1}{2}\right) = e^{\frac{1}{2} - \frac{1}{4}} = e^{\frac{1}{4}} \] ### Step 6: Set the derivative equal to the given value We are given that: \[ h'\left(\frac{1}{2}\right) = e^{\frac{1}{a}} \] From our calculation, we found: \[ e^{\frac{1}{4}} = e^{\frac{1}{a}} \] ### Step 7: Equate the exponents Since the bases are the same, we can equate the exponents: \[ \frac{1}{4} = \frac{1}{a} \] ### Step 8: Solve for \( a \) Cross-multiplying gives: \[ a = 4 \] Thus, the value of \( a \) is \( 4 \). ### Final Answer The value of \( a \) is \( 4 \). ---

To solve the problem step by step, we will analyze the functions given and find the derivative of \( h(x) \) at \( x = \frac{1}{2} \). ### Step 1: Define the functions We have: - \( f(x) = e^x \) - \( g(x) = \begin{cases} x^2 & \text{if } x < \frac{1}{2} \\ x - \frac{1}{4} & \text{if } x \geq \frac{1}{2} ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=(e^(x))/(1+x^(2)) and g(x)=f'(x) , then

If the function f(x)=x^3+e^(x/2) and g(x)=f ^(−1)(x) , then the value of g ′ (1) is

For f(x)=3x^(2)+4,g(x)=2, and h={(1,1),(2,1),(3,2)}

Let f(x)=1/(4-3cos^2x+5sin^2x) and if its antiderivative F(x)=(1/3) tan^-1(g(x))+C then g(x) is equal to

Suppose f, g, and h be three real valued function defined on R. Let f(x) = 2x + |x|, g(x) = (1)/(3)(2x-|x|) and h(x) = f(g(x)) The domain of definition of the function l (x) = sin^(-1) ( f(x) - g (x) ) is equal to

Let f(x)=x^2+xg^2(1)+g^''(2) and g(x)=f(1).x^2+xf'(x)+f''(x), then find f(x) and g(x).

If f(x)={{:(x",",0lexle1),(2-e^(x-1)",",1ltxle2),(x-e",",2ltxle3):} and g'(x)=f(x), x in [1,3] , then

Let g (x) be the inverse of f (x) =(2 ^(x+1)-2^(1-x))/(2 ^(x)+2 ^(-x)) then g (x) be :

If the function f (x)=-4e^((1-x)/(2))+1 +x+(x ^(2))/(2)+ (x ^(3))/(3) and g (x) =f ^(-1)(x), then the value of g'((-7)/(6)) equals :

If f(x) = 3x + 1 and g(x) = x^(2) - 1 , then (f + g) (x) is equal to

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. Let f(x)=e^(x),g(x)={:{(x^(2),if,xlt(1)/(2)),(x-(1)/(4),if,xge(1)/(2))...

    Text Solution

    |

  2. The least positive vlaue of the parameter 'a' for which there exist at...

    Text Solution

    |

  3. The locus of the midpoint of a chord of the circle x^2+y^2=4 which sub...

    Text Solution

    |

  4. If f(x)=x + tan x and f si the inverse of g, then g'(x) equals

    Text Solution

    |

  5. Tangents PA and PB are drawn to parabola y^(2)=4x from any arbitrary p...

    Text Solution

    |

  6. If lim(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" ...

    Text Solution

    |

  7. Eccentricity of ellipse 2(x-y+1)^(2)+3(x+y+2)^(2)=5 is

    Text Solution

    |

  8. If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y. Then which ...

    Text Solution

    |

  9. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  10. tan^(-1)(sinx)=sin^(-1)(tanx) holds true for

    Text Solution

    |

  11. The function f(x) = (x^(2) - 1)|x^(2) - 3x + 3|+cos (|x|) is not diffe...

    Text Solution

    |

  12. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  13. If the normals at (x(i),y(i)) i=1,2,3,4 to the rectangular hyperbola x...

    Text Solution

    |

  14. Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le...

    Text Solution

    |

  15. The sum of the roots of the equation tan^(-1)(x+3)-tan^(-1)(x-3)="sin"...

    Text Solution

    |

  16. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  17. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  18. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then

    Text Solution

    |

  19. For the curve y=4x^3-2x^5, find all the points at which the tangents p...

    Text Solution

    |

  20. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  21. If y + b = m(1)(x + a) and y + b = m(2)(x+a) are two tangents to the p...

    Text Solution

    |