Home
Class 12
MATHS
if (y^(2)-y+1)[x-2]lty^(2)+y+1,AAyepsilo...

if `(y^(2)-y+1)[x-2]lty^(2)+y+1,AAyepsilonR` then `([.]` denotes G.I.F) number of positive integer value of x is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \((y^{2} - y + 1)[\text{gif}(x - 2)] < y^{2} + y + 1\) where \(y \in \mathbb{R}\), we will follow these steps: ### Step 1: Rewrite the inequality We start with the given inequality: \[ (y^{2} - y + 1)[\text{gif}(x - 2)] < y^{2} + y + 1 \] This can be rearranged to isolate the term involving \(\text{gif}(x - 2)\): \[ \text{gif}(x - 2) < \frac{y^{2} + y + 1}{y^{2} - y + 1} \] ### Step 2: Analyze the right-hand side Let \(k = \frac{y^{2} + y + 1}{y^{2} - y + 1}\). We need to find the range of \(k\) for \(y \in \mathbb{R}\). ### Step 3: Determine the bounds of \(k\) To find the minimum and maximum values of \(k\), we can analyze the expression: \[ k = 1 + \frac{2y}{y^{2} - y + 1} \] We can find the critical points by differentiating \(k\) with respect to \(y\) and setting the derivative to zero. However, we can also evaluate the limits as \(y\) approaches certain values. 1. As \(y \to \infty\), \(k \to 1 + 2 = 3\). 2. As \(y \to -\infty\), \(k \to 1 - 2 = -1\) (but we need to check the minimum value). By evaluating \(k\) at specific points, we can find that \(k\) is bounded between \(\frac{1}{3}\) and \(3\). ### Step 4: Set the bounds for \(\text{gif}(x - 2)\) From the inequality \(\text{gif}(x - 2) < k\), we know: \[ \text{gif}(x - 2) < \frac{1}{3} \quad \text{and} \quad \text{gif}(x - 2) < 3 \] Since \(\text{gif}(x - 2)\) can take integer values, we focus on the inequality \(\text{gif}(x - 2) < \frac{1}{3}\). The only integer value that satisfies this is: \[ \text{gif}(x - 2) \leq 0 \] ### Step 5: Determine possible values for \(x\) The greatest integer function \(\text{gif}(x - 2)\) can take values \(0, -1, -2, -3, \ldots\). 1. If \(\text{gif}(x - 2) = 0\), then \(x - 2 < 1\) which gives \(x < 3\). 2. If \(\text{gif}(x - 2) = -1\), then \(x - 2 < 0\) which gives \(x < 2\). 3. If \(\text{gif}(x - 2) = -2\), then \(x - 2 < -1\) which gives \(x < 1\). ### Step 6: Find positive integer values of \(x\) The positive integer values of \(x\) that satisfy \(x < 3\) are: - \(x = 1\) - \(x = 2\) Thus, the total number of positive integer values of \(x\) that satisfy the original inequality is: \[ \boxed{2} \]

To solve the inequality \((y^{2} - y + 1)[\text{gif}(x - 2)] < y^{2} + y + 1\) where \(y \in \mathbb{R}\), we will follow these steps: ### Step 1: Rewrite the inequality We start with the given inequality: \[ (y^{2} - y + 1)[\text{gif}(x - 2)] < y^{2} + y + 1 \] This can be rearranged to isolate the term involving \(\text{gif}(x - 2)\): ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

Let x^2+y^2+x y+1geqa(x+y)AAx ,y in R , then the number of possible integer (s) in the range of a is___________.

Let x^2+y^2+x y+1geqa(x+y)AAx ,y in R , then the number of possible integer (s) in the range of a is___________.

Let y be an element of the set A={1,2,3,4,5,6,10,15,30} and x_(1) , x_(2) , x_(3) be integers such that x_(1)x_(2)x_(3)=y , then the number of positive integral solutions of x_(1)x_(2)x_(3)=y is

Suppose xy-5x+2y=30, where x and y are positive integers. Find the number of possible values of x.

If f(x) = x/(x-1)=1/y then the value of f(y) is

Area of the region bounded by [x] ^(2) =[y] ^(2), if x in [1,5] , where [ ] denotes the greatest integer function is:

A derivable function f : R^(+) rarr R satisfies the condition f(x) - f(y) ge log((x)/(y)) + x - y, AA x, y in R^(+) . If g denotes the derivative of f, then the value of the sum sum_(n=1)^(100) g((1)/(n)) is

Let intsec^(- 1)[-sin^2x]dx=f(x)+C where [y] denotes largest integer le y, then find the value of [f(8/(pix))]^('') at x=2.

. If tan^2 pi(x+y)+cot^2pi (x+y)=1+sqrt(2x)/(1+x^2) where x,y in RR then the least positive value of y is

If (z^(x ^(2 ) +y ^(2)))/(z ^(-2xy ))= (z ^(3)), x and y are positive integers, and x gt y, what is the value of x -y ?

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. if (y^(2)-y+1)[x-2]lty^(2)+y+1,AAyepsilonR then ([.] denotes G.I.F) nu...

    Text Solution

    |

  2. The least positive vlaue of the parameter 'a' for which there exist at...

    Text Solution

    |

  3. The locus of the midpoint of a chord of the circle x^2+y^2=4 which sub...

    Text Solution

    |

  4. If f(x)=x + tan x and f si the inverse of g, then g'(x) equals

    Text Solution

    |

  5. Tangents PA and PB are drawn to parabola y^(2)=4x from any arbitrary p...

    Text Solution

    |

  6. If lim(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" ...

    Text Solution

    |

  7. Eccentricity of ellipse 2(x-y+1)^(2)+3(x+y+2)^(2)=5 is

    Text Solution

    |

  8. If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y. Then which ...

    Text Solution

    |

  9. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  10. tan^(-1)(sinx)=sin^(-1)(tanx) holds true for

    Text Solution

    |

  11. The function f(x) = (x^(2) - 1)|x^(2) - 3x + 3|+cos (|x|) is not diffe...

    Text Solution

    |

  12. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  13. If the normals at (x(i),y(i)) i=1,2,3,4 to the rectangular hyperbola x...

    Text Solution

    |

  14. Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le...

    Text Solution

    |

  15. The sum of the roots of the equation tan^(-1)(x+3)-tan^(-1)(x-3)="sin"...

    Text Solution

    |

  16. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  17. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  18. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then

    Text Solution

    |

  19. For the curve y=4x^3-2x^5, find all the points at which the tangents p...

    Text Solution

    |

  20. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  21. If y + b = m(1)(x + a) and y + b = m(2)(x+a) are two tangents to the p...

    Text Solution

    |