Home
Class 12
MATHS
if f(x) is a differential function such ...

if `f(x)` is a differential function such that `f(x)=int_(0)^(x)(1+2xf(t))dt&f(1)=e`, then
Q. `int_(0)^(1)f(x)dx=`

A

`(e-1)/(2)`

B

is less that 1

C

`(e+1)/(2)`

D

is greater than 1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the integral \( \int_0^1 f(x) \, dx \) given that \( f(x) = \int_0^x (1 + 2x f(t)) \, dt \) and \( f(1) = e \). ### Step-by-Step Solution: 1. **Start with the given function:** \[ f(x) = \int_0^x (1 + 2x f(t)) \, dt \] 2. **Differentiate both sides with respect to \( x \):** Using the Leibniz rule for differentiation under the integral sign, we have: \[ f'(x) = \frac{d}{dx} \left( \int_0^x (1 + 2x f(t)) \, dt \right) = 1 + 2x f(x) \] 3. **Rearranging the equation:** We can rearrange the equation to isolate \( f'(x) \): \[ f'(x) - 2x f(x) = 1 \] 4. **This is a first-order linear differential equation:** We can solve it using an integrating factor. The integrating factor \( \mu(x) \) is given by: \[ \mu(x) = e^{-\int 2x \, dx} = e^{-x^2} \] 5. **Multiply through by the integrating factor:** \[ e^{-x^2} f'(x) - 2x e^{-x^2} f(x) = e^{-x^2} \] 6. **Recognize the left-hand side as a derivative:** \[ \frac{d}{dx}(e^{-x^2} f(x)) = e^{-x^2} \] 7. **Integrate both sides:** \[ e^{-x^2} f(x) = \int e^{-x^2} \, dx + C \] 8. **Solve for \( f(x) \):** \[ f(x) = e^{x^2} \left( \int e^{-x^2} \, dx + C \right) \] 9. **Use the condition \( f(1) = e \) to find \( C \):** We know \( f(1) = e \), so we substitute \( x = 1 \): \[ e^{1^2} \left( \int_0^1 e^{-t^2} \, dt + C \right) = e \] This simplifies to: \[ \int_0^1 e^{-t^2} \, dt + C = 1 \] Thus, \( C = 1 - \int_0^1 e^{-t^2} \, dt \). 10. **Substituting back to find \( f(x) \):** \[ f(x) = e^{x^2} \left( \int e^{-t^2} \, dt + 1 - \int_0^1 e^{-t^2} \, dt \right) \] 11. **Now calculate \( \int_0^1 f(x) \, dx \):** \[ \int_0^1 f(x) \, dx = \int_0^1 x e^{x^2} \, dx \] Let \( u = x^2 \), then \( du = 2x \, dx \) or \( dx = \frac{du}{2x} \): \[ \int_0^1 x e^{x^2} \, dx = \frac{1}{2} \int_0^1 e^u \, du = \frac{1}{2} (e - 1) \] 12. **Final answer:** \[ \int_0^1 f(x) \, dx = \frac{1}{2} (e - 1) \]

To solve the problem, we need to find the value of the integral \( \int_0^1 f(x) \, dx \) given that \( f(x) = \int_0^x (1 + 2x f(t)) \, dt \) and \( f(1) = e \). ### Step-by-Step Solution: 1. **Start with the given function:** \[ f(x) = \int_0^x (1 + 2x f(t)) \, dt \] ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

if f(x) is a differential function such that f(x)=int_(0)^(x)(1+2xf(t))dt&f(1)=e , then Q. Identify the correct statements (s):

Let f(x) be a differentiable function such that f(x)=x^2 +int_0^x e^-t f(x-t) dt then int_0^1 f(x) dx=

Let f(x) be a differentiable non-decreasing function such that int_(0)^(x)(f(t))^(3)dt=(1)/(x^(2))(int_(0)^(x)f(x)dt)^(3)AAx inR-{0} andf(1)="1. If "int_(0)^(x)f(t)dt=g(x)" then "(xg'(x))/(g(x)) is

Let f:RtoR be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . y=f(x) is

If f:RrarrR,f(x) is a differentiable function such that (f(x))^(2)=e^(2)+int_(0)^(x)(f(t)^(2)+(f'(t))^(2))dtAAx inR . The values f(1) can take is/are

If f is an integrable function, show that int_(-a)^a xf(x^2)dx=0

If f:R in R is continuous and differentiable function such that int_(-1)^(x) f(t)dt+f'''(3) int_(x)^(0) dt=int_(1)^(x) t^(3)dt-f'(1)int_(0)^(x) t^(2)dt+f'(2) int_(x)^(3) r dt , then the value of f'(4), is

If f' is a differentiable function satisfying f(x)=int_(0)^(x)sqrt(1-f^(2)(t))dt+1/2 then the value of f(pi) is equal to

Let f be a differentiable function such that f'(x) = f(x) + int_(0)^(2) f(x) dx and f(0) = (4-e^(2))/(3) . Find f(x) .

Let f(x)=int_(0)^(x)(e^(t))/(t)dt(xgt0), then e^(-a)[f(x+1)-f(1+a)]=

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. if f(x) is a differential function such that f(x)=int(0)^(x)(1+2xf(t))...

    Text Solution

    |

  2. The least positive vlaue of the parameter 'a' for which there exist at...

    Text Solution

    |

  3. The locus of the midpoint of a chord of the circle x^2+y^2=4 which sub...

    Text Solution

    |

  4. If f(x)=x + tan x and f si the inverse of g, then g'(x) equals

    Text Solution

    |

  5. Tangents PA and PB are drawn to parabola y^(2)=4x from any arbitrary p...

    Text Solution

    |

  6. If lim(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" ...

    Text Solution

    |

  7. Eccentricity of ellipse 2(x-y+1)^(2)+3(x+y+2)^(2)=5 is

    Text Solution

    |

  8. If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y. Then which ...

    Text Solution

    |

  9. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  10. tan^(-1)(sinx)=sin^(-1)(tanx) holds true for

    Text Solution

    |

  11. The function f(x) = (x^(2) - 1)|x^(2) - 3x + 3|+cos (|x|) is not diffe...

    Text Solution

    |

  12. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  13. If the normals at (x(i),y(i)) i=1,2,3,4 to the rectangular hyperbola x...

    Text Solution

    |

  14. Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le...

    Text Solution

    |

  15. The sum of the roots of the equation tan^(-1)(x+3)-tan^(-1)(x-3)="sin"...

    Text Solution

    |

  16. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  17. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  18. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then

    Text Solution

    |

  19. For the curve y=4x^3-2x^5, find all the points at which the tangents p...

    Text Solution

    |

  20. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  21. If y + b = m(1)(x + a) and y + b = m(2)(x+a) are two tangents to the p...

    Text Solution

    |