Home
Class 12
MATHS
if y^(2)(y^(2)-6)+x^(2)-8x+24=0, then ma...

if `y^(2)(y^(2)-6)+x^(2)-8x+24=0`, then maximum value of `sqrt(y^(4)+x^(2))` is

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of \( \sqrt{y^4 + x^2} \) given the equation \[ y^2(y^2 - 6) + x^2 - 8x + 24 = 0, \] we can follow these steps: ### Step 1: Rewrite the equation The given equation can be rewritten as: \[ y^4 - 6y^2 + x^2 - 8x + 24 = 0. \] ### Step 2: Rearrange the equation Next, we can rearrange this equation to isolate \( x^2 \): \[ x^2 - 8x + y^4 - 6y^2 + 24 = 0. \] ### Step 3: Complete the square for \( x \) We complete the square for the \( x \) terms: \[ x^2 - 8x = (x - 4)^2 - 16. \] Substituting this back into the equation gives: \[ (x - 4)^2 - 16 + y^4 - 6y^2 + 24 = 0, \] which simplifies to: \[ (x - 4)^2 + y^4 - 6y^2 + 8 = 0. \] ### Step 4: Rearranging again Rearranging this gives: \[ (x - 4)^2 = -y^4 + 6y^2 - 8. \] ### Step 5: Analyze the right side For \( (x - 4)^2 \) to be non-negative, we need: \[ -y^4 + 6y^2 - 8 \geq 0. \] This implies: \[ y^4 - 6y^2 + 8 \leq 0. \] ### Step 6: Let \( t = y^2 \) Let \( t = y^2 \), then we have: \[ t^2 - 6t + 8 \leq 0. \] ### Step 7: Solve the quadratic inequality The roots of the quadratic equation \( t^2 - 6t + 8 = 0 \) can be found using the quadratic formula: \[ t = \frac{6 \pm \sqrt{(-6)^2 - 4 \cdot 1 \cdot 8}}{2 \cdot 1} = \frac{6 \pm \sqrt{36 - 32}}{2} = \frac{6 \pm 2}{2}. \] This gives us the roots: \[ t = 4 \quad \text{and} \quad t = 2. \] ### Step 8: Determine the intervals The quadratic opens upwards (since the coefficient of \( t^2 \) is positive), so the inequality \( t^2 - 6t + 8 \leq 0 \) holds for: \[ 2 \leq t \leq 4. \] ### Step 9: Find \( y \) Since \( t = y^2 \), we have: \[ \sqrt{2} \leq |y| \leq 2. \] ### Step 10: Find \( x \) Now substituting back to find \( x \): From \( (x - 4)^2 = -y^4 + 6y^2 - 8 \), we need to evaluate \( -y^4 + 6y^2 - 8 \) at the endpoints \( y^2 = 2 \) and \( y^2 = 4 \). 1. For \( y^2 = 2 \): \[ -2^2 + 6 \cdot 2 - 8 = -4 + 12 - 8 = 0 \implies (x - 4)^2 = 0 \implies x = 4. \] 2. For \( y^2 = 4 \): \[ -4^2 + 6 \cdot 4 - 8 = -16 + 24 - 8 = 0 \implies (x - 4)^2 = 0 \implies x = 4. \] ### Step 11: Calculate \( \sqrt{y^4 + x^2} \) Now we calculate \( \sqrt{y^4 + x^2} \) at these points: - At \( y^2 = 2 \) and \( x = 4 \): \[ \sqrt{(2)^2 + (4)^2} = \sqrt{4 + 16} = \sqrt{20} = 2\sqrt{5}. \] - At \( y^2 = 4 \) and \( x = 4 \): \[ \sqrt{(4)^2 + (4)^2} = \sqrt{16 + 16} = \sqrt{32} = 4\sqrt{2}. \] ### Step 12: Find the maximum value Comparing \( 2\sqrt{5} \) and \( 4\sqrt{2} \): - \( 2\sqrt{5} \approx 4.472 \) - \( 4\sqrt{2} \approx 5.656 \) Thus, the maximum value of \( \sqrt{y^4 + x^2} \) is: \[ \boxed{4\sqrt{2}}. \]

To find the maximum value of \( \sqrt{y^4 + x^2} \) given the equation \[ y^2(y^2 - 6) + x^2 - 8x + 24 = 0, \] we can follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

If y ^(2)(y^(2) -6) + x ^(2) -8x +24 =0 and the minimum value of x ^(2) + y^(4) is m and maximum value is M, then find the value of M-2m.

If (x,y) lies on the ellipse x^(2)+2y^(3) = 2 , then maximum value of x^(2)+y^(2)+ sqrt(2)xy - 1 is

If x^(2)-6x-27=0 and y^(2)-6y-40=0 , what is the maximum value of x+y ?

If x^2+y^2=4 then find the maximum value of (x^3+y^3)/(x+y)

Suppose xa n dy are real numbers and that x^2+9y^2-4x+6y+4=0 . Then the maximum value of ((4x-9y))/2 is__________

Find the number of possible common tangents of following pairs of circles (i) x^(2)+y^(2)-14x+6y+33=0 x^(2)+y^(2)+30x-2y+1=0 (ii) x^(2)+y^(2)+6x+6y+14=0 x^(2)+y^(2)-2x-4y-4=0 (iii) x^(2)+y^(2)-4x-2y+1=0 x^(2)+y^(2)-6x-4y+4=0 (iv) x^(2)+y^(2)-4x+2y-4=0 x^(2)+y^(2)+2x-6y+6=0 (v) x^(2)+y^(2)+4x-6y-3=0 x^(2)+y^(2)+4x-2y+4=0

If (x-2)^2+(y-2)^2=1, then which of the following is true? a.maximum value of x+y is 4+sqrt(2) b.maximum value of x-y is sqrt(2) c.maximum value of x y is (9+4sqrt(2))/2 d.minimum value of x+y is 4-sqrt(2)

If y = f(x) and y^(4) - 4y + x = 0 . If f (-8) = 2 , then the value of |28 f' (- 8)| is

If x,y in R satisfy the equation x^2 + y^2 - 4x-2y + 5 = 0, then the value of the expression [(sqrtx-sqrty)^2+4sqrt(xy)]/((x+sqrt(xy)) is

If the circles x^(2) + y^(2) = k and x^(2) + y^(2) + 8x - 6y + 9 = 0 touch externally, then the value of k is

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. if y^(2)(y^(2)-6)+x^(2)-8x+24=0, then maximum value of sqrt(y^(4)+x^(2...

    Text Solution

    |

  2. The least positive vlaue of the parameter 'a' for which there exist at...

    Text Solution

    |

  3. The locus of the midpoint of a chord of the circle x^2+y^2=4 which sub...

    Text Solution

    |

  4. If f(x)=x + tan x and f si the inverse of g, then g'(x) equals

    Text Solution

    |

  5. Tangents PA and PB are drawn to parabola y^(2)=4x from any arbitrary p...

    Text Solution

    |

  6. If lim(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" ...

    Text Solution

    |

  7. Eccentricity of ellipse 2(x-y+1)^(2)+3(x+y+2)^(2)=5 is

    Text Solution

    |

  8. If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y. Then which ...

    Text Solution

    |

  9. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  10. tan^(-1)(sinx)=sin^(-1)(tanx) holds true for

    Text Solution

    |

  11. The function f(x) = (x^(2) - 1)|x^(2) - 3x + 3|+cos (|x|) is not diffe...

    Text Solution

    |

  12. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  13. If the normals at (x(i),y(i)) i=1,2,3,4 to the rectangular hyperbola x...

    Text Solution

    |

  14. Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le...

    Text Solution

    |

  15. The sum of the roots of the equation tan^(-1)(x+3)-tan^(-1)(x-3)="sin"...

    Text Solution

    |

  16. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  17. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  18. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then

    Text Solution

    |

  19. For the curve y=4x^3-2x^5, find all the points at which the tangents p...

    Text Solution

    |

  20. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  21. If y + b = m(1)(x + a) and y + b = m(2)(x+a) are two tangents to the p...

    Text Solution

    |