Home
Class 12
MATHS
if f(n,theta)=prod(r=1)^(n) (1-tan^(2)(t...

if `f(n,theta)=prod_(r=1)^(n) (1-tan^(2)(theta)/(2^(r)))` then the value of `lim_(thetato0) [lim_(ntoinfty) f(n,theta)]`, (where `[x]` represent the greatest integer function) is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the limit: \[ \lim_{\theta \to 0} \left[ \lim_{n \to \infty} f(n, \theta) \right] \] where \[ f(n, \theta) = \prod_{r=1}^{n} \left( 1 - \frac{\tan^2(\theta)}{2^r} \right) \] ### Step 1: Rewrite the product We start by rewriting the product \( f(n, \theta) \): \[ f(n, \theta) = \prod_{r=1}^{n} \left( 1 - \frac{\tan^2(\theta)}{2^r} \right) \] ### Step 2: Analyze the limit as \( n \to \infty \) As \( n \to \infty \), we consider the behavior of the terms in the product. For small values of \( \theta \), \( \tan(\theta) \approx \theta \), so we can approximate: \[ f(n, \theta) \approx \prod_{r=1}^{n} \left( 1 - \frac{\theta^2}{2^r} \right) \] ### Step 3: Use logarithms to simplify the product Taking the logarithm of \( f(n, \theta) \): \[ \log f(n, \theta) = \sum_{r=1}^{n} \log \left( 1 - \frac{\theta^2}{2^r} \right) \] For small \( x \), \( \log(1 - x) \approx -x \), so we can approximate: \[ \log f(n, \theta) \approx -\sum_{r=1}^{n} \frac{\theta^2}{2^r} \] ### Step 4: Evaluate the sum The sum \( \sum_{r=1}^{n} \frac{1}{2^r} \) is a geometric series: \[ \sum_{r=1}^{n} \frac{1}{2^r} = 1 - \frac{1}{2^n} \approx 1 \quad \text{as } n \to \infty \] Thus, we have: \[ \log f(n, \theta) \approx -\theta^2 \quad \text{as } n \to \infty \] ### Step 5: Exponentiate to find \( f(n, \theta) \) Exponentiating gives us: \[ f(n, \theta) \approx e^{-\theta^2} \quad \text{as } n \to \infty \] ### Step 6: Take the limit as \( \theta \to 0 \) Now we take the limit as \( \theta \to 0 \): \[ \lim_{\theta \to 0} f(n, \theta) = \lim_{\theta \to 0} e^{-\theta^2} = e^0 = 1 \] ### Step 7: Apply the greatest integer function Finally, we apply the greatest integer function: \[ \left[ \lim_{\theta \to 0} \lim_{n \to \infty} f(n, \theta) \right] = [1] = 1 \] ### Final Answer Thus, the value of \[ \lim_{\theta \to 0} \left[ \lim_{n \to \infty} f(n, \theta) \right] = 1 \]

To solve the problem, we need to evaluate the limit: \[ \lim_{\theta \to 0} \left[ \lim_{n \to \infty} f(n, \theta) \right] \] where ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

Evaluate : [lim_(x to 0) (tan x)/(x)] , where [*] represents the greatest integer function.

Q. if f(n,theta)=prod_(r=1)^n(1-tan^2(theta/2^r)) , then compute lim_(n->oo)f(n,theta)

Prove that [lim_(xto0) (tan^(-1)x)/(x)]=0, where [.] represents the greatest integer function.

Evaluate: [("lim")_(xrarr0)(tan^(-1)x)/x], where [.]represent the greatest integer function

lim_(xto1) [cosec(pix)/(2)]^(1//(1-x)) (where [.] represents the greatest integer function) is equal to

Prove that [lim_(xrarr0) (sinx.tanx)/(x^(2))]=1 ,where [.] represents greatest integer function.

f(x) = lim_(n->oo) sin^(2n)(pix)+[x+1/2] , where [.] denotes the greatest integer function, is

lim_(xrarr0) [(100 tan x sin x)/(x^2)] is (where [.] represents greatest integer function).

lim_(xrarr0) [(sin^(-1)x)/(tan^(-1)x)]= (where [.] denotes the greatest integer function)

Evaluate lim_(n->oo) [sum_(r=1)^n1/2^r] , where [.] denotes the greatest integer function.

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. if f(n,theta)=prod(r=1)^(n) (1-tan^(2)(theta)/(2^(r))) then the value ...

    Text Solution

    |

  2. The least positive vlaue of the parameter 'a' for which there exist at...

    Text Solution

    |

  3. The locus of the midpoint of a chord of the circle x^2+y^2=4 which sub...

    Text Solution

    |

  4. If f(x)=x + tan x and f si the inverse of g, then g'(x) equals

    Text Solution

    |

  5. Tangents PA and PB are drawn to parabola y^(2)=4x from any arbitrary p...

    Text Solution

    |

  6. If lim(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" ...

    Text Solution

    |

  7. Eccentricity of ellipse 2(x-y+1)^(2)+3(x+y+2)^(2)=5 is

    Text Solution

    |

  8. If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y. Then which ...

    Text Solution

    |

  9. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  10. tan^(-1)(sinx)=sin^(-1)(tanx) holds true for

    Text Solution

    |

  11. The function f(x) = (x^(2) - 1)|x^(2) - 3x + 3|+cos (|x|) is not diffe...

    Text Solution

    |

  12. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  13. If the normals at (x(i),y(i)) i=1,2,3,4 to the rectangular hyperbola x...

    Text Solution

    |

  14. Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le...

    Text Solution

    |

  15. The sum of the roots of the equation tan^(-1)(x+3)-tan^(-1)(x-3)="sin"...

    Text Solution

    |

  16. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  17. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  18. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then

    Text Solution

    |

  19. For the curve y=4x^3-2x^5, find all the points at which the tangents p...

    Text Solution

    |

  20. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  21. If y + b = m(1)(x + a) and y + b = m(2)(x+a) are two tangents to the p...

    Text Solution

    |