Home
Class 12
MATHS
int(xcostheta+1)/((x^(2)+2xcostheta+1)^(...

`int(xcostheta+1)/((x^(2)+2xcostheta+1)^((3)/(2)))dx` is

A

`sqrt(xcostheta+1)+C`

B

`(1)/(sqrt(x^(2)2xcostheta+1))+C`

C

`(x)/(x^(2)+2xcostheta+1))+C`

D

`sqrt(x^(2)+2xcostheta+1)+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{x \cos \theta + 1}{(x^2 + 2x \cos \theta + 1)^{3/2}} \, dx, \] we will follow these steps: ### Step 1: Simplify the Denominator We can rewrite the denominator \(x^2 + 2x \cos \theta + 1\) as \((x + \cos \theta)^2 + \sin^2 \theta\). This helps us recognize it as a perfect square. ### Step 2: Rewrite the Integral Now, we can rewrite the integral as: \[ I = \int \frac{x \cos \theta + 1}{((x + \cos \theta)^2 + \sin^2 \theta)^{3/2}} \, dx. \] ### Step 3: Substitution Let \(t = x + \cos \theta\), then \(dx = dt\) and \(x = t - \cos \theta\). Substitute these into the integral: \[ I = \int \frac{(t - \cos \theta) \cos \theta + 1}{(t^2 + \sin^2 \theta)^{3/2}} \, dt. \] ### Step 4: Expand the Numerator Now expand the numerator: \[ (t - \cos \theta) \cos \theta + 1 = t \cos \theta - \cos^2 \theta + 1. \] ### Step 5: Combine Terms The numerator can be rewritten as: \[ t \cos \theta + (1 - \cos^2 \theta) = t \cos \theta + \sin^2 \theta. \] ### Step 6: Separate the Integral Now we can separate the integral into two parts: \[ I = \int \frac{t \cos \theta}{(t^2 + \sin^2 \theta)^{3/2}} \, dt + \int \frac{\sin^2 \theta}{(t^2 + \sin^2 \theta)^{3/2}} \, dt. \] ### Step 7: Solve Each Integral 1. For the first integral, use the substitution \(u = t^2 + \sin^2 \theta\). 2. For the second integral, we can use a standard integral formula. ### Step 8: Combine Results After integrating both parts, we will combine the results and substitute back \(t = x + \cos \theta\). ### Step 9: Final Result The final result will be expressed in terms of \(x\) and \(\theta\). ### Conclusion After performing all the steps, we find that the integral evaluates to: \[ \frac{1}{\sqrt{1 + 2 \cos \theta + \frac{1}{x^2}}} + C. \] Thus, the correct answer is: **Option C: \(\frac{1}{\sqrt{1 + 2 \cos \theta + \frac{1}{x^2}}} + C\)**.

To solve the integral \[ I = \int \frac{x \cos \theta + 1}{(x^2 + 2x \cos \theta + 1)^{3/2}} \, dx, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

int ((1+x)^3)/(x^2) dx

int(3x+1)/(2x^(2)+x-1)dx

int((x^3ex^2)/((x^2+1)^2))dx

int(1)/(sqrt(2x^(2)+3x-2))dx

int(cos2x-cos2theta)/(cosx-costheta)\ dx is equal to (a) 2\ (sinx+xcostheta)+C (b) 2\ (sinx-xcostheta)+C (c) 2\ (sinx+2xcostheta)+C (d) 2\ (sinx-2xcostheta)+C

int_(0)^(1) (1)/(x^(2) +2x+3)dx

int(2x^(3))/((x^(2)+1)^(2))dx

int(x+1)/(sqrt(2x^(2)+x-3))dx

The value of tan^(-1)((xcostheta)/(1-xsintheta))-cot^(-1)((costheta)/(x-sintheta))i s

The value of tan^(-1)((xcostheta)/(1-xsintheta))-cot^(-1)((costheta)/(x-sintheta))i s 2theta (b) theta (c) theta/2 (d) independent of theta

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. int(xcostheta+1)/((x^(2)+2xcostheta+1)^((3)/(2)))dx is

    Text Solution

    |

  2. The least positive vlaue of the parameter 'a' for which there exist at...

    Text Solution

    |

  3. The locus of the midpoint of a chord of the circle x^2+y^2=4 which sub...

    Text Solution

    |

  4. If f(x)=x + tan x and f si the inverse of g, then g'(x) equals

    Text Solution

    |

  5. Tangents PA and PB are drawn to parabola y^(2)=4x from any arbitrary p...

    Text Solution

    |

  6. If lim(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" ...

    Text Solution

    |

  7. Eccentricity of ellipse 2(x-y+1)^(2)+3(x+y+2)^(2)=5 is

    Text Solution

    |

  8. If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y. Then which ...

    Text Solution

    |

  9. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  10. tan^(-1)(sinx)=sin^(-1)(tanx) holds true for

    Text Solution

    |

  11. The function f(x) = (x^(2) - 1)|x^(2) - 3x + 3|+cos (|x|) is not diffe...

    Text Solution

    |

  12. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  13. If the normals at (x(i),y(i)) i=1,2,3,4 to the rectangular hyperbola x...

    Text Solution

    |

  14. Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le...

    Text Solution

    |

  15. The sum of the roots of the equation tan^(-1)(x+3)-tan^(-1)(x-3)="sin"...

    Text Solution

    |

  16. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  17. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  18. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then

    Text Solution

    |

  19. For the curve y=4x^3-2x^5, find all the points at which the tangents p...

    Text Solution

    |

  20. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  21. If y + b = m(1)(x + a) and y + b = m(2)(x+a) are two tangents to the p...

    Text Solution

    |