Home
Class 12
MATHS
Let A=int(0)^(1)(e^(x))/(x+1) dx then an...

Let `A=int_(0)^(1)(e^(x))/(x+1)` dx then answer the following questions in terms of A.
Q. `int_(0)^(1)(x^(2)e^(x))/(x+1)dx` equals

A

`A-e`

B

`e-2+A`

C

`2+A`

D

`2-e+A`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{1} \frac{x^2 e^x}{x+1} \, dx \) in terms of \( A = \int_{0}^{1} \frac{e^x}{x+1} \, dx \), we will follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the integral \( I \): \[ I = \int_{0}^{1} \frac{x^2 e^x}{x+1} \, dx \] We can express \( x^2 \) as \( (x+1)(x-1) + 1 \): \[ I = \int_{0}^{1} \frac{(x+1)(x-1) + 1}{x+1} e^x \, dx \] This simplifies to: \[ I = \int_{0}^{1} (x-1)e^x \, dx + \int_{0}^{1} e^x \, dx \] ### Step 2: Split the Integral Now we can split the integral into two parts: \[ I = \int_{0}^{1} (x-1)e^x \, dx + \int_{0}^{1} e^x \, dx \] ### Step 3: Evaluate the First Integral Next, we evaluate the first integral: \[ \int_{0}^{1} (x-1)e^x \, dx = \int_{0}^{1} x e^x \, dx - \int_{0}^{1} e^x \, dx \] ### Step 4: Evaluate \( \int_{0}^{1} x e^x \, dx \) To evaluate \( \int_{0}^{1} x e^x \, dx \), we can use integration by parts: Let \( u = x \) and \( dv = e^x \, dx \). Then, \( du = dx \) and \( v = e^x \). Using integration by parts: \[ \int x e^x \, dx = x e^x - \int e^x \, dx \] Evaluating from 0 to 1: \[ \int_{0}^{1} x e^x \, dx = \left[ x e^x \right]_{0}^{1} - \left[ e^x \right]_{0}^{1} \] Calculating this: \[ = (1 \cdot e^1 - 0) - (e^1 - e^0) = e - (e - 1) = 1 \] ### Step 5: Evaluate \( \int_{0}^{1} e^x \, dx \) Now we evaluate \( \int_{0}^{1} e^x \, dx \): \[ \int_{0}^{1} e^x \, dx = \left[ e^x \right]_{0}^{1} = e - 1 \] ### Step 6: Combine Results Now substituting back into our expression for \( I \): \[ I = (1 - (e - 1)) + (e - 1) = 1 - e + 1 + e - 1 = 2 - e \] ### Step 7: Relate to \( A \) Since we have \( A = \int_{0}^{1} \frac{e^x}{x+1} \, dx \), we can express \( I \) in terms of \( A \): \[ I = 2 - e + A \] ### Final Answer Thus, the final result is: \[ \int_{0}^{1} \frac{x^2 e^x}{x+1} \, dx = 2 - e + A \]

To solve the integral \( I = \int_{0}^{1} \frac{x^2 e^x}{x+1} \, dx \) in terms of \( A = \int_{0}^{1} \frac{e^x}{x+1} \, dx \), we will follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the integral \( I \): \[ I = \int_{0}^{1} \frac{x^2 e^x}{x+1} \, dx \] We can express \( x^2 \) as \( (x+1)(x-1) + 1 \): ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

Let A=int_(0)^(1)(e^(x))/(x+1) dx then answer the following questions in terms of A. Q. int_(0)^(1)((x)/(x+1))^(2)e^(x)dx equals

int_(0)^(1) x e^(x) dx=1

int_(-1)^(1)e^(2x)dx

int_(0)^(1)e^(2x)e^(e^(x) dx =)

int_(0)^(1)x^(2)(1-x)^(3)dx is equal to

int_(0)^(1)(dx)/(e^(x)+e^(-x))

int_(0)^(1)x e^(x^(2)) dx

If I=int_(0)^(1) (1+e^(-x^2)) dx then, s

int_(0)^(1) (dx)/(e^(x)+e^(-x))

int_(0)^(2) (e^(-1//x))/(x^(2)) dx

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. Let A=int(0)^(1)(e^(x))/(x+1) dx then answer the following questions i...

    Text Solution

    |

  2. The least positive vlaue of the parameter 'a' for which there exist at...

    Text Solution

    |

  3. The locus of the midpoint of a chord of the circle x^2+y^2=4 which sub...

    Text Solution

    |

  4. If f(x)=x + tan x and f si the inverse of g, then g'(x) equals

    Text Solution

    |

  5. Tangents PA and PB are drawn to parabola y^(2)=4x from any arbitrary p...

    Text Solution

    |

  6. If lim(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" ...

    Text Solution

    |

  7. Eccentricity of ellipse 2(x-y+1)^(2)+3(x+y+2)^(2)=5 is

    Text Solution

    |

  8. If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y. Then which ...

    Text Solution

    |

  9. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  10. tan^(-1)(sinx)=sin^(-1)(tanx) holds true for

    Text Solution

    |

  11. The function f(x) = (x^(2) - 1)|x^(2) - 3x + 3|+cos (|x|) is not diffe...

    Text Solution

    |

  12. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  13. If the normals at (x(i),y(i)) i=1,2,3,4 to the rectangular hyperbola x...

    Text Solution

    |

  14. Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le...

    Text Solution

    |

  15. The sum of the roots of the equation tan^(-1)(x+3)-tan^(-1)(x-3)="sin"...

    Text Solution

    |

  16. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  17. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  18. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then

    Text Solution

    |

  19. For the curve y=4x^3-2x^5, find all the points at which the tangents p...

    Text Solution

    |

  20. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  21. If y + b = m(1)(x + a) and y + b = m(2)(x+a) are two tangents to the p...

    Text Solution

    |