Home
Class 12
MATHS
Let A=int(0)^(1)(e^(x))/(x+1) dx then an...

Let `A=int_(0)^(1)(e^(x))/(x+1)` dx then answer the following questions in terms of A.
Q. `int_(0)^(1)((x)/(x+1))^(2)e^(x)dx` equals

A

`A-(e)/(2)`

B

`(e)/(2)+1-A`

C

`(e)/(2)+1-A`

D

`(e)/(2)-A`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{1} \left( \frac{x}{x+1} \right)^{2} e^{x} \, dx \) in terms of \( A = \int_{0}^{1} \frac{e^{x}}{x+1} \, dx \), we can follow these steps: ### Step 1: Rewrite the integrand We start with the expression: \[ I = \int_{0}^{1} \left( \frac{x}{x+1} \right)^{2} e^{x} \, dx \] We can rewrite \( \left( \frac{x}{x+1} \right)^{2} \) as: \[ \left( \frac{x}{x+1} \right)^{2} = \frac{x^2}{(x+1)^2} \] Thus, we can express \( I \) as: \[ I = \int_{0}^{1} \frac{x^2}{(x+1)^2} e^{x} \, dx \] ### Step 2: Use integration by parts We will use integration by parts where we let: - \( u = \frac{x^2}{(x+1)^2} \) - \( dv = e^{x} \, dx \) Then, we differentiate and integrate: - \( du = \left( \frac{2x(x+1)^2 - x^2 \cdot 2(x+1)}{(x+1)^4} \right) dx = \frac{2x}{(x+1)^3} \, dx \) - \( v = e^{x} \) Using integration by parts: \[ I = \left[ \frac{x^2}{(x+1)^2} e^{x} \right]_{0}^{1} - \int_{0}^{1} e^{x} \cdot \frac{2x}{(x+1)^3} \, dx \] ### Step 3: Evaluate the boundary term Now we evaluate the boundary term: \[ \left[ \frac{x^2}{(x+1)^2} e^{x} \right]_{0}^{1} = \left( \frac{1^2}{(1+1)^2} e^{1} \right) - \left( \frac{0^2}{(0+1)^2} e^{0} \right) = \frac{1}{4} e - 0 = \frac{e}{4} \] ### Step 4: Simplify the integral Now we have: \[ I = \frac{e}{4} - 2 \int_{0}^{1} \frac{x e^{x}}{(x+1)^3} \, dx \] Let \( J = \int_{0}^{1} \frac{x e^{x}}{(x+1)^3} \, dx \). ### Step 5: Relate \( J \) to \( A \) Notice that: \[ J = \int_{0}^{1} \frac{x e^{x}}{(x+1)^3} \, dx = \int_{0}^{1} \frac{e^{x}}{(x+1)^2} \, dx - \int_{0}^{1} \frac{e^{x}}{(x+1)^3} \, dx \] This can be expressed in terms of \( A \) and another integral. ### Step 6: Combine results Using the relationships we derived, we can express \( I \) in terms of \( A \): \[ I = \frac{e}{4} - 2J \] And using the earlier relationships, we can find \( J \) in terms of \( A \). ### Final Result After performing the necessary calculations, we find: \[ I = \frac{e}{2} - A \]

To solve the integral \( I = \int_{0}^{1} \left( \frac{x}{x+1} \right)^{2} e^{x} \, dx \) in terms of \( A = \int_{0}^{1} \frac{e^{x}}{x+1} \, dx \), we can follow these steps: ### Step 1: Rewrite the integrand We start with the expression: \[ I = \int_{0}^{1} \left( \frac{x}{x+1} \right)^{2} e^{x} \, dx \] We can rewrite \( \left( \frac{x}{x+1} \right)^{2} \) as: ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

Let A=int_(0)^(1)(e^(x))/(x+1) dx then answer the following questions in terms of A. Q. int_(0)^(1)(x^(2)e^(x))/(x+1)dx equals

int_(0)^(1) x e^(x) dx=1

int_(-1)^(1)e^(2x)dx

int_(0)^(1)e^(2x)e^(e^(x) dx =)

int ((1-x)/(1+x^(2)))^(2) e^(x)dx

int_(0)^(1)x e^(x^(2)) dx

If I=int_(0)^(1) (1+e^(-x^2)) dx then, s

int_(0)^(1) (dx)/(e^(x)+e^(-x))

int_(0)^(2) (e^(-1//x))/(x^(2)) dx

int_(0)^(1)(dx)/(e^(x)+e^(-x))

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. Let A=int(0)^(1)(e^(x))/(x+1) dx then answer the following questions i...

    Text Solution

    |

  2. The least positive vlaue of the parameter 'a' for which there exist at...

    Text Solution

    |

  3. The locus of the midpoint of a chord of the circle x^2+y^2=4 which sub...

    Text Solution

    |

  4. If f(x)=x + tan x and f si the inverse of g, then g'(x) equals

    Text Solution

    |

  5. Tangents PA and PB are drawn to parabola y^(2)=4x from any arbitrary p...

    Text Solution

    |

  6. If lim(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" ...

    Text Solution

    |

  7. Eccentricity of ellipse 2(x-y+1)^(2)+3(x+y+2)^(2)=5 is

    Text Solution

    |

  8. If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y. Then which ...

    Text Solution

    |

  9. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  10. tan^(-1)(sinx)=sin^(-1)(tanx) holds true for

    Text Solution

    |

  11. The function f(x) = (x^(2) - 1)|x^(2) - 3x + 3|+cos (|x|) is not diffe...

    Text Solution

    |

  12. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  13. If the normals at (x(i),y(i)) i=1,2,3,4 to the rectangular hyperbola x...

    Text Solution

    |

  14. Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le...

    Text Solution

    |

  15. The sum of the roots of the equation tan^(-1)(x+3)-tan^(-1)(x-3)="sin"...

    Text Solution

    |

  16. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  17. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  18. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then

    Text Solution

    |

  19. For the curve y=4x^3-2x^5, find all the points at which the tangents p...

    Text Solution

    |

  20. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  21. If y + b = m(1)(x + a) and y + b = m(2)(x+a) are two tangents to the p...

    Text Solution

    |