Home
Class 12
MATHS
sum(n=1)^(prop)tan^(-1)((4n)/(n^(4)+5))=...

`sum_(n=1)^(prop)tan^(-1)((4n)/(n^(4)+5))=`

A

`(pi)/(4)+tan^(-1)2`

B

`(3pi)/(4)-tan^(-1)2`

C

`tan^(-1)3`

D

`(pi)/(4)+cot^(-1)2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \sum_{n=1}^{\infty} \tan^{-1}\left(\frac{4n}{n^4 + 5}\right) \), we can follow these steps: ### Step 1: Rewrite the Summation We start with the summation: \[ S = \sum_{n=1}^{\infty} \tan^{-1}\left(\frac{4n}{n^4 + 5}\right) \] ### Step 2: Simplify the Argument of the Arctangent Notice that \( n^4 + 5 \) can be rewritten as \( n^4 + 1 + 4 \) to facilitate simplification: \[ \tan^{-1}\left(\frac{4n}{n^4 + 5}\right) = \tan^{-1}\left(\frac{4n}{n^4 + 1 + 4}\right) \] ### Step 3: Use the Identity for Arctangent We can use the identity: \[ \tan^{-1}(x) - \tan^{-1}(y) = \tan^{-1}\left(\frac{x - y}{1 + xy}\right) \] to express the terms in the summation in a telescoping manner. ### Step 4: Consider the Form of the Terms We can express the argument of the arctangent in a form that allows us to use the identity: \[ \tan^{-1}\left(\frac{4n}{n^4 + 5}\right) = \tan^{-1}\left(\frac{4n}{(n^2)^2 + 2^2}\right) \] This suggests a relationship with the difference of two arctangents. ### Step 5: Set Up the Telescoping Series We can express: \[ \tan^{-1}\left(\frac{4n}{n^4 + 5}\right) = \tan^{-1}(n^2 + 2) - \tan^{-1}(n^2 - 2) \] This means that our summation can be rewritten as: \[ S = \sum_{n=1}^{\infty} \left( \tan^{-1}(n^2 + 2) - \tan^{-1}(n^2 - 2) \right) \] ### Step 6: Evaluate the Series This series is telescoping, which means that most terms will cancel out: \[ S = \lim_{N \to \infty} \left( \tan^{-1}(N^2 + 2) - \tan^{-1}(1^2 - 2) \right) \] As \( N \to \infty \), \( \tan^{-1}(N^2 + 2) \to \frac{\pi}{2} \) and \( \tan^{-1}(-1) = -\frac{\pi}{4} \). ### Step 7: Final Calculation Thus, we have: \[ S = \frac{\pi}{2} - \left(-\frac{\pi}{4}\right) = \frac{\pi}{2} + \frac{\pi}{4} = \frac{3\pi}{4} \] ### Conclusion The final result of the summation is: \[ \sum_{n=1}^{\infty} \tan^{-1}\left(\frac{4n}{n^4 + 5}\right) = \frac{3\pi}{4} \] ---

To solve the problem \( \sum_{n=1}^{\infty} \tan^{-1}\left(\frac{4n}{n^4 + 5}\right) \), we can follow these steps: ### Step 1: Rewrite the Summation We start with the summation: \[ S = \sum_{n=1}^{\infty} \tan^{-1}\left(\frac{4n}{n^4 + 5}\right) \] ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

sum_(n=1)^oo(tan^-1((4n)/(n^4-2n^2+2))) is equal to (A) tan ^-1 (2)+tan^-1 (3) (B) 4tan^-1 (1) (C) pi/2 (D) sec^-1(-sqrt2)

Find the value of lim_(n to oo) (tan(sum_(r=1)^(n) tan^(-1)((4)/(4r^(2)+3)))) .

sum_(m=1)^(n) tan^(-1) ((2m)/(m^(4) + m^(2) + 2)) is equal to

If sum_(k=1)^(k=n)tan^(- 1)((2k)/(2+k^2+k^4))=tan^(- 1)(6/7), then the value of 'n' is equal to

Prove that: sum_(m=1)^ntan^(-1)((2m)/(m^4+m^2+2))=tan^(-1)((n^2+n)/(n^2+n+2))

The sum of sum _(n=1)^(16) (n^(4))/(4n^(2) -1) is

sum_(n=1)^(oo)(2 n^2+n+1)/((n!)) =

sum_(n=1)^(oo)((1)/(4n-3)-(1)/(4n-1))=(pi)/(n) find n

Prove that : sum_(m=1)^n\ \ \ tan^(-1)((2m)/(m^4+m^2+2))=tan^(-1)((n^2+n)/(n^2+n+2))

The sum sum_(n=1)^oo tan^(-1)(3/(n^2+n-1)) is equal to

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. sum(n=1)^(prop)tan^(-1)((4n)/(n^(4)+5))=

    Text Solution

    |

  2. The least positive vlaue of the parameter 'a' for which there exist at...

    Text Solution

    |

  3. The locus of the midpoint of a chord of the circle x^2+y^2=4 which sub...

    Text Solution

    |

  4. If f(x)=x + tan x and f si the inverse of g, then g'(x) equals

    Text Solution

    |

  5. Tangents PA and PB are drawn to parabola y^(2)=4x from any arbitrary p...

    Text Solution

    |

  6. If lim(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" ...

    Text Solution

    |

  7. Eccentricity of ellipse 2(x-y+1)^(2)+3(x+y+2)^(2)=5 is

    Text Solution

    |

  8. If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y. Then which ...

    Text Solution

    |

  9. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  10. tan^(-1)(sinx)=sin^(-1)(tanx) holds true for

    Text Solution

    |

  11. The function f(x) = (x^(2) - 1)|x^(2) - 3x + 3|+cos (|x|) is not diffe...

    Text Solution

    |

  12. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  13. If the normals at (x(i),y(i)) i=1,2,3,4 to the rectangular hyperbola x...

    Text Solution

    |

  14. Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le...

    Text Solution

    |

  15. The sum of the roots of the equation tan^(-1)(x+3)-tan^(-1)(x-3)="sin"...

    Text Solution

    |

  16. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  17. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  18. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then

    Text Solution

    |

  19. For the curve y=4x^3-2x^5, find all the points at which the tangents p...

    Text Solution

    |

  20. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  21. If y + b = m(1)(x + a) and y + b = m(2)(x+a) are two tangents to the p...

    Text Solution

    |