Home
Class 12
MATHS
Find the number of positive integers n s...

Find the number of positive integers `n` such that 105 is a divisor of `n^(2)+n+1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the number of positive integers \( n \) such that \( 105 \) is a divisor of \( n^2 + n + 1 \), we will follow these steps: ### Step 1: Factorize 105 First, we factor \( 105 \): \[ 105 = 3 \times 5 \times 7 \] This means that for \( 105 \) to divide \( n^2 + n + 1 \), \( n^2 + n + 1 \) must be divisible by \( 3 \), \( 5 \), and \( 7 \). ### Step 2: Check divisibility by 3 We will check the expression \( n^2 + n + 1 \) modulo \( 3 \): - If \( n \equiv 0 \mod 3 \): \[ n^2 + n + 1 \equiv 0^2 + 0 + 1 \equiv 1 \mod 3 \] - If \( n \equiv 1 \mod 3 \): \[ n^2 + n + 1 \equiv 1^2 + 1 + 1 \equiv 3 \equiv 0 \mod 3 \] - If \( n \equiv 2 \mod 3 \): \[ n^2 + n + 1 \equiv 2^2 + 2 + 1 \equiv 4 + 2 + 1 \equiv 7 \equiv 1 \mod 3 \] Thus, \( n^2 + n + 1 \) is divisible by \( 3 \) if \( n \equiv 1 \mod 3 \). ### Step 3: Check divisibility by 5 Next, we check \( n^2 + n + 1 \) modulo \( 5 \): - If \( n \equiv 0 \mod 5 \): \[ n^2 + n + 1 \equiv 0^2 + 0 + 1 \equiv 1 \mod 5 \] - If \( n \equiv 1 \mod 5 \): \[ n^2 + n + 1 \equiv 1^2 + 1 + 1 \equiv 3 \mod 5 \] - If \( n \equiv 2 \mod 5 \): \[ n^2 + n + 1 \equiv 2^2 + 2 + 1 \equiv 7 \equiv 2 \mod 5 \] - If \( n \equiv 3 \mod 5 \): \[ n^2 + n + 1 \equiv 3^2 + 3 + 1 \equiv 13 \equiv 3 \mod 5 \] - If \( n \equiv 4 \mod 5 \): \[ n^2 + n + 1 \equiv 4^2 + 4 + 1 \equiv 21 \equiv 1 \mod 5 \] Thus, \( n^2 + n + 1 \) is never divisible by \( 5 \). ### Step 4: Check divisibility by 7 Finally, we check \( n^2 + n + 1 \) modulo \( 7 \): - If \( n \equiv 0 \mod 7 \): \[ n^2 + n + 1 \equiv 1 \mod 7 \] - If \( n \equiv 1 \mod 7 \): \[ n^2 + n + 1 \equiv 3 \mod 7 \] - If \( n \equiv 2 \mod 7 \): \[ n^2 + n + 1 \equiv 7 \equiv 0 \mod 7 \] - If \( n \equiv 3 \mod 7 \): \[ n^2 + n + 1 \equiv 13 \equiv 6 \mod 7 \] - If \( n \equiv 4 \mod 7 \): \[ n^2 + n + 1 \equiv 21 \equiv 0 \mod 7 \] - If \( n \equiv 5 \mod 7 \): \[ n^2 + n + 1 \equiv 31 \equiv 3 \mod 7 \] - If \( n \equiv 6 \mod 7 \): \[ n^2 + n + 1 \equiv 43 \equiv 1 \mod 7 \] Thus, \( n^2 + n + 1 \) is divisible by \( 7 \) if \( n \equiv 2 \mod 7 \) or \( n \equiv 4 \mod 7 \). ### Conclusion Since \( n^2 + n + 1 \) is never divisible by \( 5 \), we conclude that there are no positive integers \( n \) such that \( 105 \) is a divisor of \( n^2 + n + 1 \). ### Final Answer The number of positive integers \( n \) such that \( 105 \) is a divisor of \( n^2 + n + 1 \) is \( \boxed{0} \).

To solve the problem of finding the number of positive integers \( n \) such that \( 105 \) is a divisor of \( n^2 + n + 1 \), we will follow these steps: ### Step 1: Factorize 105 First, we factor \( 105 \): \[ 105 = 3 \times 5 \times 7 \] This means that for \( 105 \) to divide \( n^2 + n + 1 \), \( n^2 + n + 1 \) must be divisible by \( 3 \), \( 5 \), and \( 7 \). ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

Find the largest positive integer n such that 2^(n) divides 3^(4096)-1

If n is an odd positive integer, show that (n^2-1) is divisible by 8.

If n is an odd positive integer, show that (n^2-1) is divisible by 8.

Find the least positive integer n such that ((2i)/(1+i))^n is a positive integer.

Find the least positive integer n such that ((2i)/(1+i))^n is a positive integer.

Find the least positive integer n such that ((2i)/(1+i))^n is a positive integer.

Find the total number of integer n such that 2lt=nlt=2000 and H.C.F. of n and 36 is 1.

Find the total number of integer n such that 2lt=nlt=2000 and H.C.F. of n and 36 is 1.

Find the total number of integer n such that 2lt=nlt=2000 and H.C.F. of n and 36 is 1.

Using De Moivre's theorem, find the least positive integer n such that ((2i)/(1+i))^(n) is a positive integer.

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. Find the number of positive integers n such that 105 is a divisor of n...

    Text Solution

    |

  2. The least positive vlaue of the parameter 'a' for which there exist at...

    Text Solution

    |

  3. The locus of the midpoint of a chord of the circle x^2+y^2=4 which sub...

    Text Solution

    |

  4. If f(x)=x + tan x and f si the inverse of g, then g'(x) equals

    Text Solution

    |

  5. Tangents PA and PB are drawn to parabola y^(2)=4x from any arbitrary p...

    Text Solution

    |

  6. If lim(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" ...

    Text Solution

    |

  7. Eccentricity of ellipse 2(x-y+1)^(2)+3(x+y+2)^(2)=5 is

    Text Solution

    |

  8. If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y. Then which ...

    Text Solution

    |

  9. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  10. tan^(-1)(sinx)=sin^(-1)(tanx) holds true for

    Text Solution

    |

  11. The function f(x) = (x^(2) - 1)|x^(2) - 3x + 3|+cos (|x|) is not diffe...

    Text Solution

    |

  12. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  13. If the normals at (x(i),y(i)) i=1,2,3,4 to the rectangular hyperbola x...

    Text Solution

    |

  14. Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le...

    Text Solution

    |

  15. The sum of the roots of the equation tan^(-1)(x+3)-tan^(-1)(x-3)="sin"...

    Text Solution

    |

  16. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  17. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  18. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then

    Text Solution

    |

  19. For the curve y=4x^3-2x^5, find all the points at which the tangents p...

    Text Solution

    |

  20. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  21. If y + b = m(1)(x + a) and y + b = m(2)(x+a) are two tangents to the p...

    Text Solution

    |