Home
Class 12
MATHS
if veca and vecb non-zero ad non-colline...

if `veca` and `vecb` non-zero ad non-collinear vectors, then

A

`vecaxxvecb=[vecavecbhati]hati+[vecavecbhatj]hatj+[vecavecbhatk]hatk`

B

veca.vecb=(veca.hati)(vecb.hati)+(veca.hatj)(vecb.hatj)+(veca.hatk)(vecb.hatk)`

C

if `vecu=hata-(hata.hatb)hatb` and `vecv=hataxxhatb` then `|vecv|=|vecu|`

D

if `vecc=vecaxx(vecaxxvecb)`, then `vecc.veca=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem regarding the non-zero and non-collinear vectors \(\vec{a}\) and \(\vec{b}\), we will analyze the properties of vector operations, specifically the cross product and dot product. ### Step-by-Step Solution: 1. **Understanding Non-Collinear Vectors**: - Non-collinear vectors \(\vec{a}\) and \(\vec{b}\) means they do not lie on the same line. This implies that their cross product \(\vec{a} \times \vec{b}\) will not be zero. 2. **Cross Product**: - The cross product of two vectors \(\vec{a}\) and \(\vec{b}\) is given by: \[ \vec{a} \times \vec{b} = |\vec{a}||\vec{b}|\sin(\theta) \hat{n} \] where \(\theta\) is the angle between the two vectors and \(\hat{n}\) is the unit vector perpendicular to the plane containing \(\vec{a}\) and \(\vec{b}\). 3. **Dot Product**: - The dot product of two vectors \(\vec{a}\) and \(\vec{b}\) is given by: \[ \vec{a} \cdot \vec{b} = |\vec{a}||\vec{b}|\cos(\theta) \] This product gives a scalar value and is zero if the vectors are orthogonal. 4. **Verifying Options**: - **Option A**: The expression \(\vec{a} \times \vec{b} = \vec{a}b_1 \hat{i} + \vec{a}b_2 \hat{j} + \vec{a}b_3 \hat{k}\) can be verified by calculating the components of the cross product using the determinant of a matrix formed by the unit vectors and the components of \(\vec{a}\) and \(\vec{b}\). - **Option B**: The dot product \(\vec{a} \cdot \vec{b}\) can be computed using the components of \(\vec{a}\) and \(\vec{b}\) and confirming that it equals \(a_1b_1 + a_2b_2 + a_3b_3\). - **Option C**: For the vectors defined as \(u = \hat{a} - \hat{a} \cdot \hat{b} \hat{b}\) and \(v = \hat{a} \times \hat{b}\), we can show that the magnitudes of \(u\) and \(v\) are equal by using the properties of sine and cosine functions in vector projections. - **Option D**: The expression \(c = \vec{a} \times (\vec{a} \times \vec{b})\) can be simplified using the vector triple product identity, and we can show that \(c \cdot \vec{a} = 0\). 5. **Conclusion**: - After verifying all options, we conclude that all options (A, B, C, D) are correct.

To solve the problem regarding the non-zero and non-collinear vectors \(\vec{a}\) and \(\vec{b}\), we will analyze the properties of vector operations, specifically the cross product and dot product. ### Step-by-Step Solution: 1. **Understanding Non-Collinear Vectors**: - Non-collinear vectors \(\vec{a}\) and \(\vec{b}\) means they do not lie on the same line. This implies that their cross product \(\vec{a} \times \vec{b}\) will not be zero. 2. **Cross Product**: ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

If veca vecb are non zero and non collinear vectors, then [(veca, vecb, veci)]hati+[(veca, vecb, vecj)]hatj+[(veca, vecb, veck)]hatk is equal to

Statement 1: If veca, vecb are non zero and non collinear vectors, then vecaxxvecb=[(veca, vecb, hati)]hati+[(veca, vecb, hatj)]hatj+[(veca, vecb, hatk)]hatk Statement 2: For any vector vecr vecr=(vecr.hati)hati+(vecr.hatj)hatj+(vecr.hatk)hatk

If a and b are two non-zero and non-collinear vectors then a+b and a-b are

If veca and vec b are non-zero, non-collinear vectors such that |veca|=2, veca*vecb=1 and angle between veca and vec b is (pi)/(3) . If vecr is any vector such that vecr*veca=2, vecr*vecb=8, (vec r+2veca-10vecb)*(vecaxxvecb)=4sqrt(3) and satisfy to vecr+2veca-10vecb=lambda(veca xx vec b) , then lambda is equal to : (a) 1/2 (b) 2 (c) 1/4 (d) none of these

Given three vectors veca, vecb and vecc are non-zero and non-coplanar vectors. Then which of the following are coplanar.

If veca and vecb are non zero, non collinear vectors and veca_(1)=lambda veca+3 vecb, vecb_(1)=2veca+lambda vecb, vec c_(1)=veca+vecb . Find the sum of all possible real values of lambda so that points A_(1), B_(1), C_(1) whose position vectors are veca_(1), vecb_(1), vec c_(1) respectively are collinear is equal to.

If veca and vecb are non-zero, non parallel vectors, then the value of |veca + vecb+veca xx vecb|^(2) +|veca + vecb-veca xx vecb|^(2) equals

If vec a , vec ba n d vec c are three non-zero non-coplanar vectors, then the value of (veca.veca)vecb×vecc+(veca.vecb)vecc×veca+(veca.vecc)veca×vecb.

If veca and vecb be two non-collinear unit vectors such that vecaxx(vecaxxvecb)=-1/2vecb ,then find the angle between veca and vecb .

If vecp=2veca-3vecb, vecq=veca-2b+vecc, vecr=-3veca+vecb+2vecc, veca,vecb,vecc being non-zero, non-coplanar vectors, then -2veca+vecb-vecc is equal to

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. if veca and vecb non-zero ad non-collinear vectors, then

    Text Solution

    |

  2. The least positive vlaue of the parameter 'a' for which there exist at...

    Text Solution

    |

  3. The locus of the midpoint of a chord of the circle x^2+y^2=4 which sub...

    Text Solution

    |

  4. If f(x)=x + tan x and f si the inverse of g, then g'(x) equals

    Text Solution

    |

  5. Tangents PA and PB are drawn to parabola y^(2)=4x from any arbitrary p...

    Text Solution

    |

  6. If lim(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" ...

    Text Solution

    |

  7. Eccentricity of ellipse 2(x-y+1)^(2)+3(x+y+2)^(2)=5 is

    Text Solution

    |

  8. If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y. Then which ...

    Text Solution

    |

  9. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  10. tan^(-1)(sinx)=sin^(-1)(tanx) holds true for

    Text Solution

    |

  11. The function f(x) = (x^(2) - 1)|x^(2) - 3x + 3|+cos (|x|) is not diffe...

    Text Solution

    |

  12. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  13. If the normals at (x(i),y(i)) i=1,2,3,4 to the rectangular hyperbola x...

    Text Solution

    |

  14. Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le...

    Text Solution

    |

  15. The sum of the roots of the equation tan^(-1)(x+3)-tan^(-1)(x-3)="sin"...

    Text Solution

    |

  16. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  17. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  18. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then

    Text Solution

    |

  19. For the curve y=4x^3-2x^5, find all the points at which the tangents p...

    Text Solution

    |

  20. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  21. If y + b = m(1)(x + a) and y + b = m(2)(x+a) are two tangents to the p...

    Text Solution

    |