Home
Class 12
MATHS
Let f(x) be a function defined by f(x)=i...

Let `f(x)` be a function defined by `f(x)=int_(1)^(x)t(t^(2)-3t+2)dt,1ltxlt3` then the maximum value of `f(x)` is

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of the function \( f(x) \) defined by the integral \[ f(x) = \int_{1}^{x} t(t^2 - 3t + 2) \, dt \] for \( 1 < x < 3 \), we will follow these steps: ### Step 1: Simplify the integrand First, simplify the expression inside the integral: \[ t(t^2 - 3t + 2) = t^3 - 3t^2 + 2t \] ### Step 2: Compute the integral Now we can compute the integral: \[ f(x) = \int_{1}^{x} (t^3 - 3t^2 + 2t) \, dt \] We can integrate term by term: \[ \int t^3 \, dt = \frac{t^4}{4}, \quad \int t^2 \, dt = \frac{t^3}{3}, \quad \int t \, dt = \frac{t^2}{2} \] Thus, \[ f(x) = \left[ \frac{t^4}{4} - t^3 + t^2 \right]_{1}^{x} \] ### Step 3: Evaluate the definite integral Now, evaluate the integral from 1 to \( x \): \[ f(x) = \left( \frac{x^4}{4} - x^3 + x^2 \right) - \left( \frac{1^4}{4} - 1^3 + 1^2 \right) \] Calculating the constant part: \[ \frac{1}{4} - 1 + 1 = \frac{1}{4} \] So, \[ f(x) = \frac{x^4}{4} - x^3 + x^2 - \frac{1}{4} \] ### Step 4: Find the derivative Next, we find the derivative \( f'(x) \): \[ f'(x) = x^3 - 3x^2 + 2x \] ### Step 5: Set the derivative to zero To find the critical points, set \( f'(x) = 0 \): \[ x^3 - 3x^2 + 2x = 0 \] Factoring out \( x \): \[ x(x^2 - 3x + 2) = 0 \] This gives us: \[ x = 0 \quad \text{or} \quad x^2 - 3x + 2 = 0 \] Factoring the quadratic: \[ (x - 1)(x - 2) = 0 \] Thus, the critical points are \( x = 1, 2 \). ### Step 6: Analyze the intervals We need to check the intervals \( (1, 2) \) and \( (2, 3) \) to determine where \( f(x) \) is increasing or decreasing. - For \( x < 1 \), \( f'(x) < 0 \) (not in our interval). - For \( 1 < x < 2 \), \( f'(x) < 0 \) (decreasing). - For \( 2 < x < 3 \), \( f'(x) > 0 \) (increasing). ### Step 7: Evaluate \( f(x) \) at the endpoints Now we evaluate \( f(x) \) at the endpoints \( x = 1 \) and \( x = 3 \): 1. **At \( x = 1 \)**: \[ f(1) = 0 \] 2. **At \( x = 3 \)**: \[ f(3) = \frac{3^4}{4} - 3^3 + 3^2 - \frac{1}{4} \] \[ = \frac{81}{4} - 27 + 9 - \frac{1}{4} \] \[ = \frac{81}{4} - \frac{108}{4} + \frac{36}{4} - \frac{1}{4} \] \[ = \frac{81 - 108 + 36 - 1}{4} = \frac{8}{4} = 2 \] ### Conclusion The maximum value of \( f(x) \) occurs at \( x = 3 \): \[ \text{Maximum value of } f(x) = 2 \]

To find the maximum value of the function \( f(x) \) defined by the integral \[ f(x) = \int_{1}^{x} t(t^2 - 3t + 2) \, dt \] for \( 1 < x < 3 \), we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

Let f(x) be a function defined by f(x)=int_1^xt(t^2-3t+2)dt,1<=x<=3 Then the range of f(x) is

Let f(x) be a function defined by f(x)=int_(1)^(x)t(t^2-3t+2)dt,x in [1,3] Then the range of f(x), is

Let f(x)=int_(2)^(x)f(t^(2)-3t+4)dt . Then

Let f(x) be a differentiable function satisfying f(x)=int_(0)^(x)e^((2tx-t^(2)))cos(x-t)dt , then find the value of f''(0) .

If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then

If int_(0)^(x^(2)(1+x))f(t)dt=x , then the value of f(2) is.

If int_(0) ^(x) f (t) dt = x + int _(x ) ^(1) t f (t) dt, then the value of f (1) , is

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

Let f(x)=int_(0)^(x)"cos" ((t^(2)+2t+1)/(5))dt,o>x>2, then

f(x)=int_0^x f(t) dt=x+int_x^1 tf(t)dt, then the value of f(1) is

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. Let f(x) be a function defined by f(x)=int(1)^(x)t(t^(2)-3t+2)dt,1ltxl...

    Text Solution

    |

  2. The least positive vlaue of the parameter 'a' for which there exist at...

    Text Solution

    |

  3. The locus of the midpoint of a chord of the circle x^2+y^2=4 which sub...

    Text Solution

    |

  4. If f(x)=x + tan x and f si the inverse of g, then g'(x) equals

    Text Solution

    |

  5. Tangents PA and PB are drawn to parabola y^(2)=4x from any arbitrary p...

    Text Solution

    |

  6. If lim(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" ...

    Text Solution

    |

  7. Eccentricity of ellipse 2(x-y+1)^(2)+3(x+y+2)^(2)=5 is

    Text Solution

    |

  8. If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y. Then which ...

    Text Solution

    |

  9. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  10. tan^(-1)(sinx)=sin^(-1)(tanx) holds true for

    Text Solution

    |

  11. The function f(x) = (x^(2) - 1)|x^(2) - 3x + 3|+cos (|x|) is not diffe...

    Text Solution

    |

  12. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  13. If the normals at (x(i),y(i)) i=1,2,3,4 to the rectangular hyperbola x...

    Text Solution

    |

  14. Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le...

    Text Solution

    |

  15. The sum of the roots of the equation tan^(-1)(x+3)-tan^(-1)(x-3)="sin"...

    Text Solution

    |

  16. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  17. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  18. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then

    Text Solution

    |

  19. For the curve y=4x^3-2x^5, find all the points at which the tangents p...

    Text Solution

    |

  20. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  21. If y + b = m(1)(x + a) and y + b = m(2)(x+a) are two tangents to the p...

    Text Solution

    |