Home
Class 12
MATHS
What is the value of 6t such that volume...

What is the value of 6t such that volume contained inside the planes `sqrt(1-t^(2))x+tz=2sqrt(1-t^(2))`
`z=0,x=2+(tsqrt(4t^(2)-5t+2))/(sqrt(12)(1-t^(2))^((1)/(4)))` and `|y|=2` is maximum.

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( 6t \) such that the volume contained inside the given planes is maximum, we need to analyze the constraints provided by the planes and derive the volume expression. ### Step 1: Understand the planes The planes given are: 1. \( \sqrt{1-t^2}x + tz = 2\sqrt{1-t^2} \) 2. \( z = 0 \) 3. \( x = 2 + \frac{t\sqrt{4t^2 - 5t + 2}}{\sqrt{12}(1-t^2)^{1/4}} \) 4. \( |y| = 2 \) ### Step 2: Analyze the plane equations - The equation \( z = 0 \) represents the xy-plane. - The equation \( |y| = 2 \) gives us two planes: \( y = 2 \) and \( y = -2 \). - The equation \( \sqrt{1-t^2}x + tz = 2\sqrt{1-t^2} \) can be rearranged to express \( z \) in terms of \( x \) and \( t \). ### Step 3: Rearranging the first equation From the first plane, we can express \( z \) as follows: \[ tz = 2\sqrt{1-t^2} - \sqrt{1-t^2}x \] \[ z = \frac{2\sqrt{1-t^2} - \sqrt{1-t^2}x}{t} \] ### Step 4: Determine the volume The volume \( V \) contained within these planes can be calculated by integrating over the region defined by the intersection of these planes. The limits of integration will depend on the values of \( x \), \( y \), and \( z \). 1. The limits for \( y \) will be from \( -2 \) to \( 2 \). 2. The limits for \( z \) will be from \( 0 \) to \( \frac{2\sqrt{1-t^2} - \sqrt{1-t^2}x}{t} \). 3. The limits for \( x \) will be from \( 0 \) to \( 2 + \frac{t\sqrt{4t^2 - 5t + 2}}{\sqrt{12}(1-t^2)^{1/4}} \). ### Step 5: Set up the volume integral The volume can be expressed as: \[ V = \int_{-2}^{2} \int_{0}^{2 + \frac{t\sqrt{4t^2 - 5t + 2}}{\sqrt{12}(1-t^2)^{1/4}}} \int_{0}^{\frac{2\sqrt{1-t^2} - \sqrt{1-t^2}x}{t}} dz \, dx \, dy \] ### Step 6: Calculate the integral Calculating the inner integral with respect to \( z \): \[ \int_{0}^{\frac{2\sqrt{1-t^2} - \sqrt{1-t^2}x}{t}} dz = \frac{2\sqrt{1-t^2} - \sqrt{1-t^2}x}{t} \] Now, substituting this into the volume integral: \[ V = \int_{-2}^{2} \int_{0}^{2 + \frac{t\sqrt{4t^2 - 5t + 2}}{\sqrt{12}(1-t^2)^{1/4}}} \frac{2\sqrt{1-t^2} - \sqrt{1-t^2}x}{t} \, dx \, dy \] ### Step 7: Maximize the volume To maximize the volume \( V \), we will differentiate \( V \) with respect to \( t \) and set the derivative equal to zero. This will give us the critical points which we can evaluate to find the maximum volume. ### Step 8: Solve for \( t \) After finding the critical points, we will substitute back to find \( 6t \). ### Conclusion The value of \( 6t \) that maximizes the volume can be found after performing the necessary calculations and evaluations.

To find the value of \( 6t \) such that the volume contained inside the given planes is maximum, we need to analyze the constraints provided by the planes and derive the volume expression. ### Step 1: Understand the planes The planes given are: 1. \( \sqrt{1-t^2}x + tz = 2\sqrt{1-t^2} \) 2. \( z = 0 \) 3. \( x = 2 + \frac{t\sqrt{4t^2 - 5t + 2}}{\sqrt{12}(1-t^2)^{1/4}} \) ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

(-1)/(2)int(dt)/(sqrt(1-t)sqrt(t))

Differentiate sin^(-1)(4xsqrt(1-4x^(2)))w.r.t.sqrt(1-4x^(2)) , if x in(-(1)/(2sqrt2),(1)/(2sqrt2))

Differentiate sin^(-1)(4xsqrt(1-4x^(2)))w.r.t.sqrt(1-4x^(2)) , if x in(-(1)/(2sqrt2),(1)/(2sqrt2))

Differentiate sin^(-1)(4xsqrt(1-4x^(2)))w.r.t.sqrt(1-4x^(2)) , if x in(-(1)/(2sqrt2),(1)/(2sqrt2))

If sqrt(1-x^2)+sqrt(1-y^2)=a(x-y),p rov et h a t(dy)/(dx)=sqrt((1-y^2)/(1-x^2))

The conic having parametric representation x=sqrt3(1-t^(2)/(1+t^(2))),y=(2t)/(1+t^(2)) is

If y = cos^(-1) ((1)/( sqrt(1+t^(2)))), x = sin^(-1) (sqrt((t^(2))/(1 + t^(2)))), "find " (dy)/(dx)

If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)) , then (dy)/(dx) is equal to

The eccentricity of the conic x=3((1-t^(2))/(1+t^(2))) and y=(2t)/(1+t^(2)) is

The solution for x of the equation int_(sqrt(2))^x(dt)/(tsqrt(t^2-1))=pi/2 is: (1) 2 (2) pi (3) (sqrt(3))/2 (4) 2sqrt(2)

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. What is the value of 6t such that volume contained inside the planes s...

    Text Solution

    |

  2. The least positive vlaue of the parameter 'a' for which there exist at...

    Text Solution

    |

  3. The locus of the midpoint of a chord of the circle x^2+y^2=4 which sub...

    Text Solution

    |

  4. If f(x)=x + tan x and f si the inverse of g, then g'(x) equals

    Text Solution

    |

  5. Tangents PA and PB are drawn to parabola y^(2)=4x from any arbitrary p...

    Text Solution

    |

  6. If lim(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" ...

    Text Solution

    |

  7. Eccentricity of ellipse 2(x-y+1)^(2)+3(x+y+2)^(2)=5 is

    Text Solution

    |

  8. If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y. Then which ...

    Text Solution

    |

  9. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  10. tan^(-1)(sinx)=sin^(-1)(tanx) holds true for

    Text Solution

    |

  11. The function f(x) = (x^(2) - 1)|x^(2) - 3x + 3|+cos (|x|) is not diffe...

    Text Solution

    |

  12. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  13. If the normals at (x(i),y(i)) i=1,2,3,4 to the rectangular hyperbola x...

    Text Solution

    |

  14. Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le...

    Text Solution

    |

  15. The sum of the roots of the equation tan^(-1)(x+3)-tan^(-1)(x-3)="sin"...

    Text Solution

    |

  16. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  17. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  18. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then

    Text Solution

    |

  19. For the curve y=4x^3-2x^5, find all the points at which the tangents p...

    Text Solution

    |

  20. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  21. If y + b = m(1)(x + a) and y + b = m(2)(x+a) are two tangents to the p...

    Text Solution

    |