Home
Class 12
CHEMISTRY
If the Planck's constant h=6.6×10^(-34) ...

If the Planck's constant h=6.6×`10^(-34)` Js, the de Broglie wave length of a particle having momentum of 5.5 .×`10^(-24) kg m s^(-1)` will be

A

1.2`A^0`

B

2.2`A^0`

C

3.2`A^0`

D

4.2`A^0`

Text Solution

AI Generated Solution

The correct Answer is:
To find the de Broglie wavelength of a particle given its momentum, we can use the de Broglie wavelength formula: \[ \lambda = \frac{h}{p} \] where: - \(\lambda\) is the de Broglie wavelength, - \(h\) is Planck's constant, - \(p\) is the momentum of the particle. ### Step-by-step Solution: 1. **Identify the values given in the problem:** - Planck's constant \(h = 6.6 \times 10^{-34} \, \text{Js}\) - Momentum \(p = 5.5 \times 10^{-24} \, \text{kg m s}^{-1}\) 2. **Substitute the values into the de Broglie wavelength formula:** \[ \lambda = \frac{h}{p} = \frac{6.6 \times 10^{-34} \, \text{Js}}{5.5 \times 10^{-24} \, \text{kg m s}^{-1}} \] 3. **Perform the calculation:** - First, calculate the division: \[ \lambda = \frac{6.6}{5.5} \times \frac{10^{-34}}{10^{-24}} = 1.2 \times 10^{-10} \, \text{m} \] 4. **Convert the wavelength into angstroms:** - Since \(1 \, \text{angstrom} = 10^{-10} \, \text{m}\), we can express the wavelength in angstroms: \[ \lambda = 1.2 \, \text{angstrom} \] 5. **Final Answer:** The de Broglie wavelength of the particle is \(1.2 \, \text{angstrom}\).

To find the de Broglie wavelength of a particle given its momentum, we can use the de Broglie wavelength formula: \[ \lambda = \frac{h}{p} \] where: - \(\lambda\) is the de Broglie wavelength, ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • ALDEHYDES, KETONES, CARBOXYLIC ACID

    RESONANCE ENGLISH|Exercise INORGANIC CHEMISTRY(d & f- Block Elments)|15 Videos
  • ALDEHYDES, KETONES, CARBOXYLIC ACID

    RESONANCE ENGLISH|Exercise ORGANIC CHEMISTRY(Aldehydes , Ketones, Carboxylic acid)|40 Videos
  • ALKYL HALIDE, ALCOHOL, PHENOL, ETHER

    RESONANCE ENGLISH|Exercise ORGANIC CHEMISTRY(Alkyl Halide, Alcohol,Phenol,Ether)|56 Videos

Similar Questions

Explore conceptually related problems

If the Planck's constant h=6.6× 10^(-34) Js, the de Broglie wave length of a particle having momentum of 6.6× 10^(-24) kg m s^(-1) will be

If the Planck's constant h=6.6× 10^(-34) Js, the de Broglie wave length of a particle having momentum of 1.1× 10^(-24) kg m s^(-1) will be

If the Planck's constant h=6.6× 10^(-34) Js, the de Broglie wave length of a particle having momentum of 3.3× 10^(-24) kg m s^(-1) will be ...

If the Planck's constant h=6.6× 10^(-34) Js, the de Broglie wave length of a particle having momentum of 2.2× 10^(-24) kg m s^(-1) will be

If the Planck's constant h=6.6× 10^(-34) Js, the de Broglie wave length of a particle having momentum of 4.4× 10^(-24) kg m s^(-1) will be

Find the de Broglie wavelength of a 0.01 kg pallet having a velocity of 10 m//s .

If the mass of neutron is 1.7xx10^(-27) kg , then the de Broglie wavelength of neutron of energy 3eV is (h = 6.6xx10^(-34) J.s)

The mass of hydrogen atom is 1.66 xx 10^(-24)g and Planck's constant is 6.64 xx 10^(-27) erg.sec. The de Broglie wavelength of a hydrogen atom moving with a velocity half that of light of

Find the de Broglie wavelength of 2 MeV proton. Mass of proton =1.64xx10^(-27)kg , h=6.625xx10^(-34)Js

The de Broglie wavelength of neutrons in thermal equilibrium is (given m_n=1.6xx10^(-27) kg)