Home
Class 12
MATHS
Integrate with respect to x: 1/(2+cosx...

Integrate with respect to x: `1/(2+cosx)`

Text Solution

AI Generated Solution

To solve the integral \( I = \int \frac{1}{2 + \cos x} \, dx \), we can follow these steps: ### Step 1: Rewrite the Cosine Function We know that \( \cos x \) can be expressed in terms of the tangent function using the identity: \[ \cos x = \frac{1 - \tan^2(\frac{x}{2})}{1 + \tan^2(\frac{x}{2})} \] Substituting this into the integral gives: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise PART-II ONLY ONE OPTION CORRECT TYPE|6 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise SECTION B; INTEGRATION USING SUBSTITUTION|8 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise EXERCISE -1 SUBJECTIVE QUESTIONS|1 Videos
  • FUNDAMENTAL OF MATHEMATICS

    RESONANCE ENGLISH|Exercise Exercise|135 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise HLP|34 Videos

Similar Questions

Explore conceptually related problems

Integrate with respect to x: i) x ln x

Integrate with respect to x: i) 1/((x+1)sqrt(x+2))

Integrate with respect to x : i) 1/(x^(2)+4)

Integrate with respect to x:1/sqrt(2x+1)

Integrate with respect to x : 1/(x^(4)+x^(2)+1)

Integrate with respect to x : 1/((x+1)(x+2))

Integrate with respect to x: i) sin^(2)x ,

If 3f(cosx)+2f(sinx)=5x , then f^(')(cosx) is equal to (where f^(') denotes derivative with respect to x ) (A) −1/(cosx) (B) 1/(cosx) (C) -1/(sinx) (D) 1/(sinx)

Integrate with respect to x:sqrt(x+1)

Integrate with respect to x: i) sin^(2)x , ii) cos^(3)x , iii) sin2xcos3x , iv) 1/(sqrt(x+3)-sqrt(x+2))