Home
Class 12
MATHS
If In=int cot^n dc and I0+I1+2(I2+.........

If `I_n=int cot^n dc and I_0+I_1+2(I_2+.......+I_8)+I_9+I_10=A(u+(u^2)/2+........+(u^9)/9)+` constant where `u=cot x` then

A

A=2

B

`A=-1`

C

A=1

D

A is dependent on x

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \( I_n = \int \cot^n x \, dx \) and find the expression for \( I_0 + I_1 + 2(I_2 + \ldots + I_8) + I_9 + I_{10} \). ### Step 1: Write the expression for \( I_n \) We start with the integral: \[ I_n = \int \cot^n x \, dx \] ### Step 2: Use integration by parts or reduction formula We can use the reduction formula for integrals of powers of cotangent: \[ I_n = \int \cot^n x \, dx = \frac{1}{n} \cot^{n-1} x - \frac{n-1}{n} I_{n-2} \] This means we can express \( I_n \) in terms of \( I_{n-2} \). ### Step 3: Set up the equation From the reduction formula, we can derive: \[ I_n + I_{n-2} = \frac{1}{n-1} \cot^{n-1} x \] ### Step 4: Calculate the sum \( I_0 + I_1 + 2(I_2 + \ldots + I_8) + I_9 + I_{10} \) We need to calculate: \[ S = I_0 + I_1 + 2(I_2 + I_3 + I_4 + I_5 + I_6 + I_7 + I_8) + I_9 + I_{10} \] ### Step 5: Substitute values for \( I_n \) Using the reduction formula, we can compute the values of \( I_n \) for \( n = 0 \) to \( n = 10 \): - \( I_0 = \int dx = x + C \) - \( I_1 = \int \cot x \, dx = \ln |\sin x| + C \) - \( I_2 = \int \cot^2 x \, dx = -\cot x + x + C \) - Continuing this process, we find the values for \( I_3, I_4, \ldots, I_{10} \). ### Step 6: Combine the results After computing \( I_n \) for \( n = 0 \) to \( n = 10 \), we substitute these values into the expression for \( S \): \[ S = I_0 + I_1 + 2(I_2 + I_3 + I_4 + I_5 + I_6 + I_7 + I_8) + I_9 + I_{10} \] ### Step 7: Substitute \( u = \cot x \) Since \( u = \cot x \), we can express \( S \) in terms of \( u \): \[ S = A\left(u + \frac{u^2}{2} + \ldots + \frac{u^9}{9}\right) + \text{constant} \] ### Step 8: Identify the value of \( A \) By comparing the coefficients from the expression derived from the integral with the given expression, we can determine the value of \( A \). ### Conclusion After evaluating the integrals and substituting, we find that: \[ A = -1 \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Exercise-2 Part-2|1 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Exercise-2 Part-3|1 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Section E): Integration by trignometric functions:|6 Videos
  • FUNDAMENTAL OF MATHEMATICS

    RESONANCE ENGLISH|Exercise Exercise|135 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise HLP|34 Videos

Similar Questions

Explore conceptually related problems

If I_1/I_2 =9 then find the value of (I_max - I_min)/ (I_max+I_min) A ̅

(i ^10 +1)(i ^9+1)(i ^8 +1).......(i+1) equal to

Let int_x^(x+p)f(t)dt be independent of x and I_1=int_0^p f(t) dt , I_2 = int_(10)^(p^n+10) f(z) dz for some p , where n in N . Then evaluate (I_2)/(I_1) .

If I_(n)=int_(0)^(pi//2) x^(n) sin x dx , then I_(4)+12I_(2) is equal to\

IfI_1=int_0^(pi/2)(cos^2x)/(1+cos^2x)dx ,I_2=int_0^(pi/2)(sin^2x)/(1+sin^2x)dx I_3=int_0^(pi/2)(1+2cos^2xsin^2x)/(4+2cos^2xsin^2x)dx ,t h e n I_1=I_2> I_3 (b) I_3> I_1=I_2 I_1=I_2=I_3 (d) none of these

If I_n=int_0^(pi//4)tan^("n")x dx , prove that I_n+I_(n-2)=1/(n-1)dot

If U_n=int_0^(pi/2)(sin^2n x)/(sin^2x)dx, then show that U_1,U_2,U_3.......U_n constitute an AP. Hence or otherwise find the value of U_n.

If I_(1) =int _(0)^(1) (1+x ^(8))/(1+x^(4)) dx sand I_(2)=int _(0)^(1) (1+ x ^(9))/(1+x ^(2)) dx, then:

A data consists of n observations x_(1), x_(2), ..., x_(n). If Sigma_(i=1)^(n) (x_(i) + 1)^(2) = 9n and Sigma_(i=1)^(n) (x_(i) - 1)^(2) = 5n , then the standard deviation of this data is

If I_(n)=int_(0)^(pi//4) tan^(n)x dx , then (1)/(I_(2)+I_(4)),(1)/(I_(3)+I_(5)),(1)/(I_(4)+I_(6)),... from\