Home
Class 12
MATHS
The value of int(sinx.cosx.cos2x.cos4x.c...

The value of `int(sinx.cosx.cos2x.cos4x.cos8x.cos16x)`dx is equal to

A

`(sin16x)/(1024) + C`

B

`-(cos32x)/(1024)+C`

C

`(cos32x)/(1096)+C`

D

`-(cos32x)/(1096)+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \sin x \cos x \cos 2x \cos 4x \cos 8x \cos 16x \, dx \), we will follow a systematic approach using trigonometric identities. ### Step-by-Step Solution: 1. **Multiply and Divide by 2**: We start by multiplying and dividing the integral by 2: \[ I = \int \sin x \cos x \cos 2x \cos 4x \cos 8x \cos 16x \, dx = \frac{1}{2} \int 2 \sin x \cos x \cos 2x \cos 4x \cos 8x \cos 16x \, dx \] 2. **Use the Identity**: We use the identity \( 2 \sin x \cos x = \sin 2x \): \[ I = \frac{1}{2} \int \sin 2x \cos 2x \cos 4x \cos 8x \cos 16x \, dx \] 3. **Repeat the Process**: Again, we multiply and divide by 2: \[ I = \frac{1}{2} \cdot \frac{1}{2} \int 2 \sin 2x \cos 2x \cos 4x \cos 8x \cos 16x \, dx = \frac{1}{4} \int \sin 2x \cos 2x \cos 4x \cos 8x \cos 16x \, dx \] Using the identity again: \[ I = \frac{1}{4} \cdot \frac{1}{2} \int \sin 4x \cos 4x \cos 8x \cos 16x \, dx = \frac{1}{8} \int \sin 4x \cos 4x \cos 8x \cos 16x \, dx \] 4. **Continue the Process**: We repeat this process: \[ I = \frac{1}{8} \cdot \frac{1}{2} \int \sin 8x \cos 8x \cos 16x \, dx = \frac{1}{16} \int \sin 8x \cos 8x \cos 16x \, dx \] \[ I = \frac{1}{16} \cdot \frac{1}{2} \int \sin 16x \cos 16x \, dx = \frac{1}{32} \int \sin 16x \cos 16x \, dx \] 5. **Final Step**: Finally, we apply the identity one last time: \[ I = \frac{1}{32} \cdot \frac{1}{2} \int \sin 32x \, dx = \frac{1}{64} \int \sin 32x \, dx \] The integral of \( \sin 32x \) is: \[ \int \sin 32x \, dx = -\frac{1}{32} \cos 32x + C \] Therefore: \[ I = \frac{1}{64} \left(-\frac{1}{32} \cos 32x\right) + C = -\frac{1}{2048} \cos 32x + C \] ### Final Answer: \[ I = -\frac{1}{2048} \cos 32x + C \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Exercise-2 Part-5|1 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Exercise-2 Part-6|1 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Exercise-2 Part-3|1 Videos
  • FUNDAMENTAL OF MATHEMATICS

    RESONANCE ENGLISH|Exercise Exercise|135 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise HLP|34 Videos

Similar Questions

Explore conceptually related problems

Evaluate int sin x cos x cos2x cos 4x cos 8x dx

Evaluate int sin x cosx * cos 2x * cos 4x dx

int sinx cos^2 x dx

int(cos2x)/((sinx+cosx)^(2))dx is equal to

int(cos7x-cos8x)/(cos2x-cos3x)dx

int cos 4x. cos 2x dx

Evaluate: int(cosx)/(cos3x)dx

Evaluate: int(cosx)/(cos3x)dx

int cos2x*cos4x*cos6x dx

Evaluate: int(sinx)/(cos2x)\ dx