Home
Class 12
MATHS
If f(1-x)/(1+x)=x and g(x) = intf(x)dx t...

If `f(1-x)/(1+x)=x` and `g(x) = intf(x)dx` then

A

g(x) is continous in domain

B

g(x) is discontinous at two points in its domain

C

`lim_(xto infty)g^(')=-1`

D

`intg(x)dx=-x^(2)/2+(2x+1)lambdan(1+x)/e+C`

Text Solution

Verified by Experts

AC
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise COMPREHENSION|5 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Exercise-3 Part I- JEE ADVANCED/ IIT-JEE PROBLEMS|8 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise SINGLE AND DOUBLE VALUE INTEGER TYPE|16 Videos
  • FUNDAMENTAL OF MATHEMATICS

    RESONANCE ENGLISH|Exercise Exercise|135 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise HLP|34 Videos

Similar Questions

Explore conceptually related problems

If f(x) = (1)/(1 -x) x ne 1 and g(x) = (x-1)/(x) , x ne0 , then the value of g[f(x)] is :

If f(x) = x^(2) and g(x) = (1)/(x^(3)) . Then the value of (f(x)+g(x))/(f(-x)-g(-x)) at x = 2 is

If f(x) = 3x + 1 and g(x) = x^(2) - 1 , then (f + g) (x) is equal to

If f(x)=|x-1|" and "g(x)=f(f(f(x))) , then for xgt2,g'(x) is equal to

If f(x)=1/((x-1)(x-2)) and g(x)=1/x^2 then points of discontinuity of f(g(x)) are

If f(x)=x+tanx and g(x) is the inverse of f(x) , then differentiation of g(x) is (a) 1/(1+[g(x)-x]^2) (b) 1/(2-[g(x)+x]^2) (c)1/(2+[g(x)-x]^2) (d) none of these

If the function f(x)=x^3+e^(x/2) and g(x)=f ^(−1)(x) , then the value of g ′ (1) is

Let f(x)=(1)/(x) and g(x)=(1)/(sqrt(x)) . Then,

Let f(x)=(1)/(x) and g(x)=(1)/(sqrt(x)) . Then,