Home
Class 12
MATHS
The domain of the function f(x)=(1)/(sqr...

The domain of the function `f(x)=(1)/(sqrt(|x|-x))` is

A

`(-oo,oo)`

B

`(0,oo)`

C

`(-oo,0)`

D

`(-oo,oo)-{0}`

Text Solution

Verified by Experts

The correct Answer is:
A

NA
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise HLP_TYPE|38 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SSP|55 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise JEE ADVANCED|12 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

The domain of the function f(x)=(1)/(sqrt((x)-[x])) where [*] denotes the greatest integer function is

The domain of the function f(x)=(1)/(sqrt(|cosx|+cosx)) is

Write the domain of the real function f(x)=1/(sqrt(|x|-x))

The domain of the function f(x)=1/(sqrt([x]^2-2[x]-8)) is, where [*] denotes greatest integer function

The domain of definition of the function f(x)=(1)/(sqrt(|x|+x)) is

The domain of the function f(x)=sqrt(x-sqrt(1-x^2)) is

The domain of the function f(x)=(1)/(sqrt([x]^(2)-[x]-20)) is (where, [.] represents the greatest integer function)

The domain of the function f(x)=(sec^(-1)x)/(sqrt(x-[x])) , where [x] denotes the greatest integers less than or equal to x is defined for all x belonging to

Statement 1 : The domain of the function f(x)=sqrt(x-[x])" is "R^(+) Statement 2 : The domain of the function sqrt(f(x)) is {x : f (x) ge 0} .

The domain of the function f(x) = (1)/(sqrt(4 + 3 sin x)) is :